Search published articles


Showing 6 results for Lotfi

A. Alami, M. Taeb, A. Lotfi, Y. Sadeghian Motahar,
Volume 7, Issue 1 (spring 2003)
Abstract

Thirty genotypes of pistachio cultivars and related species were evaluated for genetic diversity using three polymorphic isozymes, i.e. Esterase, Peroxidase and Malate dehydrogenase. Young leaves of pistachio were crushed with extraction buffer containing: 20% sucrose, 0.01 M dithiothretiol, 2% polyethylene glycol, and 8% polyvenyl polypyrollidone. Samples were analyzed using isoelectric focussing on polyacrylamide gels containing 2% (W/V) ampholyte. All the three isozymes revealed high degrees of polymorphism in pistachio cultivars and related species. Maximum polymorphism was observed for Est. enzyme. A total of 19 bands in Est. and 28 bands in MDH were observed in a wide range of pH gradient however, in Per. there were 11 bands all of which located in a narrow range of pH gradient. Cluster analysis based on the three system enzymes revealed that all the 30 pistachio genotypes were in 8 main classes and 20 subclasses and the extent of genetic similarity reduced from cultivated varieties to species, which were finally classified in 3 groups. Sarakhs variety, a wild type of P. vera, was classified in a group between cultivated varieties and species.
D. Lotfi, A. Hemmat, M. R. Akhavan Sarraf,
Volume 11, Issue 1 (spring 2007)
Abstract

For measuring draft force and drawbar power requirements for mounted implements, precise instruments such as three-point hitch dynamometers and tractor speed measurement devices are needed. In this research, a frame-type three-point hitch dynamometer was built and evaluated. Forces applied to dynamometer are measured by three separate load cells located on a frame which can be attached to tractor’s three-point hitch. Each dynamometer’s load cell measures load using a strain gauge bridge circuit. Each load cell was calibrated by applying a known load and measuring bridge circuit’s output voltage. Dynamometer was calibrated by the application of known forces and measuring the output voltage of the strain gauge bridges. The calibration showed a high degree of linearity between the applied forces and the bridge outputs (R2 = 0.996). The hysteresis effect between loading and unloading as well as the effect of the position of the applied forces from the longitudinal axis of the dynamometer was small. For measuring actual tractor speed, a fifth wheel equipped with an encoder shaft was designed and built. The calibration on tarmac and soil surfaces showed a highly linear relation between measured forward speed and output of encoder’s rotation (R2 =0.994). The errors in speed measurements at low speed in field and at high speed (up to 12.5 km/h) on tarmac surface were approximately 3 and 8%, respectively. The data acquisition system, not only could display the instantaneous force and speed, it could also show force-time and force-distance curves on the system’s monitor.
K. Solaimani, R. Tamartash, F. Alavi, S. Lotfi,
Volume 11, Issue 40 (summer 2007)
Abstract

In order to manage the rangeland resources, remote sensing data is able to provide a sensible role of different cases in flora community such as biomass. The study area in SefidAb subbasin of the Lar Dam basin is located in central Alborz, where the climatic condition is semihumid and near to moderate. For the assessment of the sattelite data and their capability in estimation of the range production, Landsat-TM data with different bands was used. In this research, the field data was collected using random-systematic method in 20 sampling units of 200 plots. For geographic coordinates of the sampling units and related pixels in digital data, GPS and also existing benchmark data of the nearest points were used. Then correlation between ground data and vegetation index from different band combination was investigated and the reasonble vegetation indices were obtained. Finally, the best models were extracted for this purpose, which showed sensible relation between the field data and vegetation index. Therefor, it is possible to estimate range production using Landsat TM data related to ground control.
Y. Lotfi, F. Nourbakhsh, M. Afyuni,
Volume 11, Issue 42 (winter 2008)
Abstract

  Organic fertilization has been practiced in Iran due to the shortage of soil organic matter. In recent years, attention has been payed to the organic fertilizers because their commercial production has recently started and demands for their application have increased. The objectives of this study were to investigate the effects of organic fertilizer type, rates and times of application on the N mineralization potential (NMP) in a calcareous soil (fine loamy, mixed, thermic, Typic Haplargid) in Isfahan region. The soil samples were collected from a previousely established field experiment. The experiment design was split plot with three replications. Each main plot was split into subplots receiving 1, 2 and 3 annual consecutive applications of cow manure and sewage sludge at the rates of 0, 25 and 100 Mg ha-1. The soil samples were taken from 0-15 cm depth, 6 months after the third application of the organic fertilizers. Nitrogen mineralization potential was measured by a long-term leaching-incubation procedure. Results indicated that NMP was similarly affected by cow manure and sewage sludge. Nitrogen mineralization potential in the treatments which received 100 Mg ha-1 organic fertilizers, was 4 and 1.7 times greater than that of control and 25 Mg ha-1 treatments, respectively. A significant increase was also observed in NMP in the treatments which received different times of application. The NMP in the three-year applied treatments was 5, 2.5 and 2.1 times greater than that of control, two- and one-year applied soils. Significant correlations were observed between NMP and corn yield (r=0.531**) and corn N uptake (r=0.568***). The product of NMP and N mineralization rate constant was also significantly correlated with corn yield (r=0.710***) and corn N uptake (r=0.734***). Different patterns were observed between the responses of total N and NMP in the treated soils.


H. Farhangfar, H. Naeemipour , R. Lotfi,
Volume 12, Issue 43 (spring 2008)
Abstract

This study was undertaken to estimate genetic trend and parameters of Holstein cattle in Khorasan province for milk yield using a spline random regression test day animal model. A total of 32854 monthly test day milk records (twice and thrice a day milking) obtained from 3842 Holstein heifers (progeny of 466 sires) distributed in 125 herds and calved from 2001 to 2005 was used to predict breeding value of individual animals. In the model, fixed effects of herd including year-month of recording, milking times, age at calving (linear and quadratic covariables), Holstein gene percentage (linear covariable) as well as random effects of additive genetic and permanent environment were studied. To take account of the shape of the lactation curve at genetic and environmental levels, cubic spline polynomials were also included in the test day model. Bayesian method by applying Gibbs sampling technique (100000 chains applying RRGIBBS software) was utilized to obtain posterior means of predicted breeding value of animals for milk yield at individual month of lactation. The results showed that mean of breeding value for 305-day milk yield was 52.90 kg (p<0.05). Spearman rank correlations between predicted breeding values at different months of lactation decreased as the interval between them increased. The highest and lowest rank correlations were found between months 8 and 9 (0.998) and between months 1 and 10 (0.312), respectively. Predicted breeding value of 305-day milk had the lowest and highest rank correlations with predicted breeding value at months 1 (0.553) and 6 (0.990), respectively. Regression analysis of average predicted breeding value of progenies in their birth year showed that the amount of genetic trend for 305 day milk yield was 17.75 kg per year, statistically no different from zero (p value=0.165).
A. Lotfi, M. Mamaghninejad,
Volume 23, Issue 4 (winter 2020)
Abstract

Constructed wetland as a purification system plays an important role in water and wastewater treatment and so many research studies have been conducted to examine their efficiency for wastewater treatment. The aim of this study was to evaluate the efficiency of constructed wetland for Arak wastewater treatment plant. In this research, the efficiency of three horizontal subsurface constructed wetlands built with 3*12 meters in dimensions and 1 meter in depth was examined. In these constructed wetlands, two plants including Common reed (Phragmites australis) and Cattails (Typha latifolia) were planted and one unit was left unplanted. TSS, COD, BOD and TC parameters were measured in the 2 week samples and the results were analyzed by SPSS and Excel. The results showed that the type of vegetation had no significant influence on the organic matter removal in the subsurface constructed wetlands; however, the removal efficiencies in the planted constructed wetlands were more than those in the unplanted control one. The TSS, COD, BOD, FC and TC removal efficiency in the constructed wetlands changes was 79%, 60.7%, 45.6%, 86.1% and 90.1%, respectively, for Common reed wetland and 77%, 61.4%, 59.8%, 92.4% and 93.1%, respectively, for Cattails wetland; thee were 69%, 44.5%, 43%, 83.6% and 88.8% for the  unplanted wetland, respectively. The results of this research also showed that the organic matter removal was dependent on the influent organics nature and biodegradability. The organic concentration in the wetland effluents met the Iranian regulation limits for different reuse applications, showing the constructed wetland could be a suitable technology for wastewater treatment in Iran.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb