Showing 2 results for M. A. Hajabbassi
M. R. Bahremand, M. Afyuni, M. A. Hajabbassi, Y. Rezaeinejad,
Volume 6, Issue 4 (winter 2003)
Abstract
A field experiment was conducted to investigate the effects of sewage sludge and of time lapse after sludge application on soil physical properties. Four sewage sludge treatments (0, 25, 50, and 100 ton/ha) in a complete randomized block design with three replications were applied and mixed to a depth of 20 cm. Wheat was planted and soil physical properties were measured 23, 85, 148, and 221 days after sewage sludge application.
Sewage sludge application significantly increased MWD, hydraulic conductivity, final infiltration rate, moisture percentage at 1/3 and 15 bars, and plant available soil moisture, while it significantly decreased soil bulk density. In general, the best results obtained with the 100 ton/ha sewage sludge treatment. Time lapse after sewage sludge application caused soil physical properties to approach the values of the control. However, even 221 days after sludge application, the 50 and 100 ton/ha treatments had significantly different values compared with the control treatment. The results in this research show that sewage sludge can help to improve soil physical conditions and this effect persists over long periods. This effect is specially important with plant available soil moisture and infiltration.
A. Ahmadi Iikhchi, M. A. Hajabbassi, A. Jalalian,
Volume 6, Issue 4 (winter 2003)
Abstract
Cultivating rangeland to be shifted to crop land farms commonly causes soil degradation and runoff generation. This study was conducted to evaluate the cultivation effects on runoff generation and soil quality. The experiment was performed in a rangeland and a 40-year cultivated land located at two slope positions (back slope and shoulder) of a hillside in Dorahan, Chaharmahal & Bakhtiari Province. A 60±5 mm.hr-1 rainfall intensity was simulated by a rainulator. Organic matter, mean weighted diameter, saturated hydraulic conductivity, collected runoff and sediments were measured. The differences between the means were tested using T-test. Results showed 35, 53 and 8% increases in the organic matter, mean weighted diameter, and saturated hydraulic conductivity in back slope, respectively. The increases in these parameters in shoulder position were 39, 60 and 33%. The values for runoff and sediments in back slope were 3 and 8 times greater than in other similar positions while the values in the shoulder position were 11 and 55 times greater than the same values in other positions.