Showing 3 results for M. Esfahani
H. Sabori, A. Rezai, S. A. M. Mirmohammady Maibody, M. Esfahani,
Volume 9, Issue 1 (spring 2005)
Abstract
An experiment was conducted at Rasht Rice Research Institute, in 2001 to study trait relationships and to determine the direct and indirect effects of different characteristics on grain yield of rice (Orgza sativa L.). A 9x2 factorial experiment in complete randomized block design with 3 replications was used. The two factors were 9 cultivars, namely: Hashemi, Ali Kazemi, Binam, Sepeedroud, Nemat, Khazar, Taichung, Chanto, and Usen, and 2 planting patterns (15x15 cm and 30x30 cm). Significant differences were detected among cultivars, between planting patterns, and their interaction effects. The direct effect of the number of panicles/m2 on grain yield was positive and significant in both planting patterns and their combined analysis. Heading date had a positive and significant direct effect on the number of panicles/m2 in both planting patterns and their combined analysis. Only in 30x30 cm planting pattern, a positive correlation was found between biomass at heading date and the number of panicles/m2. Grain weight per plant had a direct and positive effect on panicle weight in the 3 cases studied. Also, in all the cases studied, flag leaf area had positive direct effects on grain weight per plant. Grain filling rate and effective grain filling period increased in 30x30 cm planting pattern. Native cultivars demonstrated longer latent period. Grain filling rate and effective grain filling period showed positive direct effects on grain yield in both plantings. According to the results obtained, an increase in the number of panicles/m2, rate of grain filling, and effective grain filling period would enhance grain yield. Selection for heading date, grain yield per plant, and flag leaf area would also indirectly increase grain yield.
H. R. Ali Abbasi, M. Esfahani, B. Rabiei, M. Kavousi,
Volume 10, Issue 4 (winter 2007)
Abstract
Effect of nitrogen (N) fertilizer levels and its split applications on yield and yield components of rice (Oryza sativa L.) Cv. Khazar was investigated in a completely randomized block design with 3 replications in a paddy light soil at Guilan province, Iran, 2003. In this experiment, six treatments including: T1-control (no N fertilizer) T2- 40 kg/ha N (at transplanting time) T3- 80 kg/ha N (at transplanting, and tillering times) T4- 80 kg/ha N (at transplanting, tillering, and panicle initiation times) T5- 120 kg/ha N (at transplanting, and tillering times) and T6- 120 kg/ha N (at transplanting, tillering, and panicle initiation times) were compared. Results showed that the highest fertile tiller number was obtained in the fifth and sixth treatments with double and triple split applications of 120 kg/h N (236 and 248 m-2). The highest fertile filled spikelets percentage (84.8%), 1000-grain weight (26.1 g) and grain yield (4.83 t/ha) belonged to the sixth treatment, but grain yield and 1000-grain weight were not significantly differerent in the fourth and sixth treatments with three fertilizing times. This finding may have resulted from the third topdressing application of nitrogen fertilizer in panicle initiation and higher leaf area (44.8 and 45.5 Cm2), leaf greenness (39.4 and 39.9) and leaf nitrogen concentration (31.2 and 33.6 g/kg) during grain filling in the fourth and sixth treatments. Regression analysis also showed that flag leaf greenness (SPAD values at 5 days after flowering) and flag leaf area accounted for about 75% and 78% changes in yield, respectively. In conclusion, triple split application of 80 kgN/ha could be suggested for rice Cv. Khazar in these regions since the yield would be the same as the application of 120Kg/ha N.
M. Esfahani Moghaddam, A. Fotovat, Gh. Haghnia,
Volume 16, Issue 59 (spring 2012)
Abstract
Silver toxicity and its fate in the environment are currently being debated and are important as challenging research topics. Even though there are several studies on its total content in soils, fractionation of Ag especially in calcareous soils has not been investigated. Therefore, to provide fundamental information on the chemical behavior of Ag in calcareous and noncalcareous soils, we studied 8-step chemical fractions of Ag (i.e., EXCH, CARB, Me-Org, re-MeOx, H2O2-Org, am-MeOx, cr-FeOx, and RES) after 30 and 60 days of incubation in soils amended with Ag (0 and 15 mg kg-1), sewage sludge (0 and 20 t ha-1) and EDTA (0 and 0.5%). Experimental results showed that redistribution of Ag in spiked noncalcareous soils was EXCH (34%), H2O2-Org (33%) and RES (17%). In calcareous soils, after 30 days, EXCH- and RES-Ag increased but at the end of 60 days H2O2-Org-Ag increased. Based on our data, we could conclude that addition of Ag results in an increase of Ag mobility in soils but incubation and sewage sludge may have adverse effect on its mobility. In contrast to noncalcareous soil, EDTA in calcareous soil resulted in higher Ag mobility. This may have environmental implications in Ag polluted calcareous soils.