Search published articles


Showing 2 results for M. H. Alizadeh

Sh. Ayobi, M. H. Alizadeh,
Volume 10, Issue 2 (summer 2006)
Abstract

Conventional soil survey methods for soils within the watersheds in Iran require a significant budget with many soil surveyors and much time. Additionally, no accurate and reliable information exists on the spatial variability of superface soil parameters in order to predict the soil loss by different models (RUSLE, PISAC, EUPOSEM, MORGAN). Also information on planning and management activities is lacking. These limitations call for methods of estimating soil properties using minimum sampling derived from important terrain parameters. This study was performed to develop soil-landscape models in three geological units (E2Sc, Ku, Plc), in a part of Mehr- watershed, Sabzevar. Six soil variables selected for this study were topsoil clay, gravel, sand, organic matter content, field capacity and bulk density measured at 316 sites on a regular 100m grid. Topographic attributes were calculated by a digital elevation model with 100m spacing. Finally, multiple linear regression analyses relating soil to topographic attributes were performed and then models were validated by additional sample points (78 of 316). The developed regression models showed significant relationships between surface soil properties and topographic attributes such as elevation, slope, aspect, wetness index, stream power index and sediment transport index. The mean errors and root mean square errors in the validation of the models were low and acceptable. The regression equations could explain only 26 to 72 % of the variability measured in the soil attributes in the watershed scale with 100m spacing.
Sh. Ayoubi, M. H. Alizadeh,
Volume 10, Issue 3 (fall 2006)
Abstract

Overgrazing is the most important agent which causes accelerated soil erosion and land degradation in arid and semi-arid zones of Iran. Appropriate planning and land use in these areas based on land suitability evaluation provide a suitable base for conserving the land and controling desertification. Land evaluation identifies possible alternatives in land use which will more effectively meet national or local needs and assists in assessing the consequences of these alternatives. Extensive grazing refers to the land utilization type in which animals feed in natural pastures. This study was performed to evaluate physical potential of the given watershed for grazing by sheep and goats, and assess the limiting factors for the land utilization type in Mehr watershed, Sabzevar, Khorasan province. Land qualities which were evaluated include accessibility to animals, soil erodibility, moisture availability, rooting conditions, salinity and alkalinity, and drinking water availability for animals. Above mentioned land qualities were assessed by appropriate land characteristics. The requirement of grazing land utilization type was defined in terms of rated land characteristics. Matching of requirements of LUT with the land qualities of each pixel of DEM (prepared in 200×200m by GIS software) resulted in a rating for every land characteristics. Some characteristics such as slope, aspect, and distance to drinking water for animals were calculated directly by GIS. Land index for every pixel was calculated by square root method. Finally, qualitative and physical land suitability classes were determined based on land indices and classified to polygons which would be suitable in grazing management. The results were interpreted under two different scenarios. In the first scenario, drinking water for animals was supplied by permanent sources and in the second one, the supplying of water was developed to temporary rivers besides the permanent sources. With the analysis of spatial modeling it was possible to assess the land suitability with higher accuracy. Overall results showed that the given area was not highly suitable for grazing at all. The most limiting factors included moisture availability for plant growth, slope, rock fragment and outcrops and distance to drinking water. Also during the late winter, spring and early summer, when the seasonal rivers were supplying the drinking water, the limitation of given area was decreased.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb