Showing 2 results for M. Sheklabadi
M. Sheklabadi, H. Khademi, A. H. Charkhabi,
Volume 7, Issue 2 (summer 2003)
Abstract
Soil erodibility in arid regions, particularly in less developed soils, greatly depends on parent material. The objectives of this study included comparison of the potential of runoff and sediment production in soils with different parent materials and identification of the highly sensitive parent materials in Golabad watershed, 60 km northeast of Isfahan, with about 160 mm of annual precipitation and various geological formations, as one of the highly erodible watersheds in Iran. Soils formed on twelve different parent materials were selected. Rainfall simulator was run for 80 minutes on three replicates of each soil. To have an idea about the rate of runoff and sediment generation with time, runoff loaded with sediment was collected every 10 minutes using plastic containers. After measuring the volume of each runoff sample, it was dried and the amount of sediment was measured. The mechanical parameters of the applied rain were: intensity about 40 mm/hr, rain drop average diameter: 6.56 mm plot size: 1 m2 and kinetic energy of 13.7-17.2 J/m2.mm. Based on the rainfall simulation experiments, soils formed on green andesite and slightly dissected alluvium derived from both sedimentary and igneous rocks created the highest amount of runoff. They also created runoff much more rapidly as compared to other soils. In contrast, soils developed on granodiorite and moderately undulating alluvium produced the least volume of runoff. Furthermore, maximum quantity of sediment was produced from the soils occurring on green andesite and shale. The least sediment yield was observed in soils developed on granodirite and moderately undulating alluvium. Soils formed on shale created the highest sediment concentration and no significant differences were observed among other soils. Based on the results obtained, soils were ranked according to sensitivity to erosion. It is concluded that soil parent materials have a high influence on the production of runoff and sediment yield in Golabad watershed.
M. Sheklabadi, H. Khademi, M. Karimian Eghbal, F. Nourbaksh,
Volume 11, Issue 41 (fall 2007)
Abstract
The effect of overgrazing on vegetation changes in central Zagros has been studied by a few scientists, but there is no detailed information on the impact of such practices on soil properties. The objective of this study was to assess the effect of climate and grazing management on selected soil biochemical properties. Fourteen experimental range sites protected against grazing as well as their adjacent overgrazed sites in Chadegan, Pishkuh and Poshtkuh were selected. In each site, samples were collected from the depths 0-5 and 5-15 cm. Soil organic C (OC), microbial biomass C (MBC), total nitrogen (TN), organic C to total N ratio (C/N), microbial biomass C to organic C ratio (Cmic/Coc) and metabolic quotient (qCO2) were measured and/or calculated. The results showed that the lowest SOC, MBC, TN and Cmic/Coc occur in Chadegan due to low fresh materials input. The above parameters in Pishkuh and Poshtkuh regions are 2.5 to 3 times greater than those in Chadegan area. Grazing intensity in Pishkuh is less than that in Poshtkuh region and there is no significant difference between grazed and protected sites in Pishkuh. But, there is a significant difference between grazed and protected plots in Poshtkuh due to a higher grazing intensity. Higher Cmic/Coc and lower qCO2 suggest that the quality of organic matter is better in Poshtkuh and Pishkuh. In conclusion, highly degraded rangelands in Pishkuh and Poshtkuh seem to be able to recover very quickly with proper management, while Chadegan region needs a much longer period of time to restore.