Showing 2 results for M.A. Hajabbasi
A.a. Besalatpour , M.a. Hajabbasi, V. Dorostkar , Gh. Torabi,
Volume 14, Issue 53 (fall 2010)
Abstract
Presence of petroleum contaminants in soil may be toxic to human and organisms and act as a source of ground water contamination hence, remediation of these compounds from environment is vital. In this study, first the feasibility of remediation of two petroleum-contaminated soil samples around Tehran Oil Refinery (oil refinery landfill and agricultural soils) was assessed using landfarming technique during a four month experimental period. The elimination of total petroleum hydrocarbons (TPHs) from soils treated through landfarming technique was then investigated in the rhizosphere of agropyron and fescue. The results showed that microbial respiration increased due to landfarming processes in both soils. Urease activity in the landfarming treatment for agricultural soil was 21, 45, 26, and 23% higher than the control at the end of first to the 4th months of experiment, respectively. However, no significant differences were observed between the landfarming and control treatments for landfill soil at the end of experiment. Furthermore, about 50 and 57% reduction in TPH-concentration was observed in the landfarming treatment for landfill and agricultural soils at the end of experiment, respectively. In the phytoremediation study, presence of TPHs in both landfarming and control treatments reduced dry matter yield of the studied plants. Urease activity in the rhizosphere of fescue and agropyron was higher than in the unplanted soil. Degradation of petroleum-compounds in the landfill soil under landfarming treatment was more than 20 and 40% in the presence of fescue and agropyron, respectively. The influence of agropyron on TPH-removal from agricultural soil under the landfarming treatment was also higher than fescue.
A.r. Melali , M.a. Hajabbasi, M. Afyuni, A. H. Khoshgoftarmanesh,
Volume 15, Issue 56 (sumer 2011)
Abstract
The petroleum refinery sludge is an important source of environmental pollution. Burning and burying of the sludge may have adverse effects on environment and human health. Thus, other mechanisms for decreasing the toxic effects of hydrocarbon substances in the sludge must be used. In this study, Isfahan refinery sludge was dewatered, air dried and mixed by 0, 10, 20, 30 and 40% w/w ratio with two calcareous soils, viz., Mahmoud Abad (Typic Haplocalcids with clay texture) and Bagh Parandegan (Anthropic Torrifluvents with silty loam texture). Different mixtures of soil and sludge were farmed for 21 days and irrigated on a daily basis to field capacity. Then, 100 seeds of Tallfescue (Festuca arundinacea) and Agropyron were planted in polluted soils with 3 replicates in 3 kg pots for 5 months. Result showed that Tallfescue and Agropyron yields decreased in sludge contaminated treatments. In the 40% sludge treatment, Tallfescue decreased the total petroleum hydrocarbons content by 65 percent. The highest degradation for agropyron was in the 30% sludge treatment which showed about 55% reduction in total petroleum hydrocarbons. The 40% sludge treatment resulted in the minimum yields of root and shoot plants. The highest degradation of TPHs occurred in the Tallfescue rhizospher of 40% sludge. Maximum degradation of TPHs on the Agropyron rhizospher was in 30% sludge mixed with Bage parandegan soil, but maximum yield of plant was in 20% sludge. Our study shows that Tallfescue rhizospher is most effective for decreasing TPHs, and that the phytoremediation in soils with more clay can adsorb and fix the toxic components and then at higher levels of pollutions can let the plants grow.