Showing 2 results for M.H. Omid
M.h. Omid, M.esmaeeli Varaki,
Volume 9, Issue 2 (summer 2005)
Abstract
خTo reduce the construction costs of stilling basins of hydraulic jump type is sometimes, novel geometries are sometimes used to adopt the basin to the upstream and downstream sections without any transition structures. Otherwise, any changes in the geometry of the basin would cause changes in the conditions and characteristics of the hydraulic jump. In this study, the effects of variation in both the side slopes and the diverging angle of a gradually expanding stilling basin with trapezoidal section on the jump condition were experimentally investigated. The experimental tests were conducted in a specially designed model for a wide range of side slopes and longitudinal divergences of the basin walls. The important parameters of the jump, such as the length, sequent depth and the rate of energy loss were computed and compared to those in the normal jumps. Tests were conducted for three different side slopes (0.5:1, 1:1, 1.5:1) and four diverging angle (3o , 5 o, 7o, 9o) with the straight jump in the rectangular section and in the wide scope of decsent numbers (from 3 to 9). The results indicate that any decrease in the side wall slopes for a particular angle of divergence would cause a reduction in the sequent depth and an increase in the jump length and energy loss compared to the rectangular section on the same angle of divergence. It is also found that the longitudinal divergence of the side walls for a particular side slope will increase the stability of the jump within the stilling basin. It will also cause a reduction in the sequent depth and the jump length as well as an increase in energy loss of the jump, when compared to the straight jumps in either rectangular or trapezoidal sections.
H. Hamidifar , M.h. Omid , J. Farhoudi ,
Volume 14, Issue 54 (winter 2011)
Abstract
This paper presents the results of an analytical and experimental study on the characteristics of hydraulic jump in a triangular channel. The analytical consideration is based on the momentum conservation law for the upstream and downstream sections of the jump. The experiments were carried out in a triangular channel of glass side walls with the vertex angle of 94.4°. A wide range of discharge and inflow Froude number were used in the experiments for two different opening heights of the upstream sluice gate. The main characteristics of the jump such as the sequent depth ratio, relative energy dissipation and water surface profile were investigated and the results were compared with those of the rectangular sections. The results showed that the triangular section is more efficient to dissipate the inflow energy. The efficiency of jump in a triangular channel is about 12% more than a rectangular channel for the same condition. As a result, hydraulic jump in a triangular channel needs a smaller tail water depth for a given inflow jet height and Froude number. Also, empirical relations and graphs are presented to determine the characteristics of the jump in triangular sections