Search published articles


Showing 2 results for Masoudian

B. Moumeni, M. Masoudian, M. A. Gholami Sefidkohi, A. Emadi,
Volume 22, Issue 3 (Fall 2018)
Abstract

Over the years, since the beginning of the national and infrastructural project of Development and Renovation of Paddy Fields of Iranian Northern provinces, it has been essential to evaluate water distribution and delivery Performance of the project to get its feedback in the pursuit of the desired goals. However, the results of the evaluation of a system can reliable when they are based on quantitative indicators, not on personal opinions and empirical judgment. So, in this study, Total Error (TE) of performance of water delivery system, a statistical indicator, and its component including adequacy, water management capability and equity errors were calculated and compared for two concrete and earthen irrigation canals. This analysis was done based on calculating water demand and measuring the volume of delivered water between outlets during the irrigation season in the paddy fields of Esmaelkola of Joybar city, in 2015. According to the results, although the concrete channel (0.28) had less error than the earthen channel (0.43) and in the concrete channel, as compared to the earthen channel, the share of the components of adequacy and water management capability from the total error was dropped from 47% to less than 10%, but the error in the water delivery of the concrete channel was still high due to the error in the equity of distribution, whose value was 0.25 (90% of the total error). Therefore, in order to reduce the performance error, after channel lining, it would be necessary to make fundamental changes in the intake and flow control structure in addition to the training of irrigators regarding water delivery based on water demand.

J. Meshkavati Toroujeni, A.a. Dehghani, A. ٍemadi, M. Masoudian,
Volume 25, Issue 3 (Fall 2021)
Abstract

One of the crucial problems that exist in the irrigation networks is the fluctuation of the water surface flow in the main channel and changes in the flow rate of the intake structure. One of the effective methods to decrease these fluctuations is increasing the weir crest length at the given width of the channel with the use of the labyrinth weirs can be achieved for this purpose. The labyrinth weir is the same linear weir that is seen as broken in the plan view. In this study, a labyrinth weir with a length of 3.72 m, three different heights of 15, 17, and 20 cm, three different shapes of dentate (rectangular, triangular, and trapezoidal), and a linear weir were used in a recirculating flume with 15 m length and 1 m width. The result showed that for a given length and height of weir, with the increasing of the upstream water head to the weir height ratio (), the discharge coefficient decreases. The results showed that by increasing weir height, the discharge coefficient decreases for a given length of the weir. Linear weir and labyrinth weir without dentate create more water depth at the upstream by 3.3 and 1.2 fold compared with dentate labyrinth weir.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb