Search published articles


Showing 3 results for Massah Bavani

A. R. Massah Bavani, S. Morid,
Volume 9, Issue 4 (winter 2006)
Abstract

In this study the impact of climate change on temperature, rainfall and river flows of the Zayandeh Rud basin under two climate change scenarios for two periods (2010-2039 and 2070-2099) are investigated. For the evaluation of future climate change impact on stream flow to Chadegan reservoir, the global circulation model (GCM) outputs of the HadCM3 model (monthly temperature and precipitation) with two scenarios, A2 and B2, are obtained and downscaled to the local level for the selected time periods. The results indicate that the annual average of precipitation decreases and temperature increases for both periods that are more pronounced for the period 2079-2099. Such that 10% to 16% decrease in precipitation and 3.2 to 4.6ºC increases in temperature can be anticipated for scenarios A2 and B2, respectively. To predict future stream flow changes due to climate change, artificial neural networks (ANNs) have been applied and trained by the several input models and architectures for rainfall-runoff simulation. The results indicate that the maximum of 5.8% decrease in the annual flows. Comparison of the two scenarios indicates the more critical situation in scenario A2 for the basin.
N. Zohrabi, A. Massah Bavani, E. Goudarzi, M. Heidarnejad,
Volume 20, Issue 77 (Fall 2016)
Abstract

Since climate change is regarded as a serious threat to different parts of life cycle, separation of factors intensifying this phenomenon seems necessary. This research has investigated the temperature and precipitation trend using the multiple trend test in the upstream Karkheh basin located in west of Iran. For this purpose, two-dimensional graphs of temperature and precipitation anomalies of the CGCM3 Model (1000-year data) were drown for the study area. Then, the attribution of changes in climate variables due to climate internal fluctuations or greenhouse gases affected by human factors were investigated. Based on the findings of this study, in different parts of the study area, the range of natural climate variables for temperature and precipitation changes (95% probability) in the west of the study area are
± 1.4ºC and ±76%, respectively.

The results showed increase and decrease in temperature and precipitation in most of the studied stations, respectively. The variables of temperature and precipitation are affected by climate change and as we approach latest years, especially in the western and central parts of the study area, the impact of greenhouse gases in increasing temperature and reducing precipitation becomes more evident. According to the current results it can be concluded that changes in land use in Iran caused by human interventions can be introduced as a significant factor for the ascending trend of temperature. However, it can be noted that the most important factors of the increased greenhouse gases in recent years are human activities such as land use changes. These changes certainly have affected water resources in the study area.


R. Mir, Gh. R. Azizyan, A. R. Massah Bavani, A. R. Gohari,
Volume 24, Issue 3 (Fall 2020)
Abstract

This study aimed to investigate the vulnerability of Sistan plain to fluctuations and Water Scarcity in Hirmand River using the vulnerability framework, by applying the resilience approach. The socioeconomic and biophysical components presented in this framework were embedded in a set of subsystems of the System Dynamics (SD) model. According to this, four levels of reference resilience were defined based on the annual flow from the Hirmand River, and the system attributes of concern were identified under the existing structure until 2050. Then, the proposed strategies to the socio-economic structure of the model were applied under two critical conditions of water scarcity and fluctuations of the river flow. The values associated to the system attributes of concern of the two mentioned conditions were compared with the reference resilience levels. The results showed the efficiency of the policy option in reducing water scarcity and the importance of the environmental impacts of the biophysical component. For example, the two modes of water scarcity and water inflow fluctuations had the revenues of 9490 and 5100 billion IRR (annual income according to the base price of 2011), but they had the same population and resident's utility, which was related to receiving 117 and 600 MCM of the environmental demand, respectively. Management, development and continuous support of the industrial sector can provide a "Success to the Successful" archetype for the socio-economic section of Sistan Plain.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb