Search published articles


Showing 1 results for Matboo

A. Zare Garizi, K. Shahedi, A. Matboo,
Volume 28, Issue 1 (Spring 2024)
Abstract

Water quality characteristics play a crucial role in water resources management, watershed health assessment, and implementing effective management strategies. The objective of this research was to present an overall assessment of the surface water quality in the Gorganrood River Basin to be utilized for developing effective watershed management plans and programs. Various physicochemical water quality data including main anions and cations, Total Dissolved Solids (TDS), Electrical Conductivity (EC), Sodium Absorption Ratio (SAR), pH, and total hardness recorded at 25 hydrometric stations across the basin were analyzed and assessed with the Canadian (CCME) Water Quality Index. The mean water quality index for drinking, agriculture, and industrial purposes indicated that headwaters and higher areas generally exhibited better water quality compared to the downstream areas of the basin. Geochemical processes and the introduction of various pollutants during water flow from the headwaters to the basin outlet contribute to a decline in water quality. The highest water quality was observed in the Kabudval and Shirabad stations, whereas the Baghesalian station exhibited the lowest. For drinking water use, hardness, bicarbonate, and chloride were identified as variables contributing to water quality decline in the headwaters and upstream areas. However, these areas predominantly maintained a moderate to good quality for drinking purposes. Conversely, downstream areas experienced a significant deterioration in water quality with higher pollutant levels such as total dissolved solids (TDS), sulfate, and sodium, resulting in relatively poor to poor conditions. Approximately 60% of the stations in the basin had excellent water quality for agricultural use, with no limiting factors. Only three stations near the basin's outlet exhibited relatively poor to poor water quality due to elevated chloride levels, sodium adsorption ratio (SAR), and electrical conductivity. only 28% of hydrometric stations demonstrated good water quality for industrial use. Hardness, pH, and TDS are the main variables contributing to water quality decline for industrial use in the upstream, while downstream areas are impacted by chloride and sulfate. The outcomes of this study hold significant implications for effective water resources management, watershed preservation, and natural resource conservation in the Gorganrood basin. From industry and especially health aspects, however, more detailed investigations are needed, taking into account some other important variables of water quality (including nitrate, total coliform, fecal coliform, etc.).


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb