Search published articles


Showing 2 results for Mirghaffari

N. Mirghaffari, H. Shariatmadari,
Volume 11, Issue 41 (fall 2007)
Abstract

Concentration of soluble fluoride in groundwater, soil, and some crops in Isfahan region was determined by Ion Selective Electrode (ISE) method. The mean fluoride concentration of water samples in the study area was 0.3 and 0.05 mg L-1 in the spring and summer, respectively. These values are in an acceptable limit for irrigation, whereas for drinking water, they are in deficiency range. The average and maximum concentrations of soluble fluoride in soil samples were 1.0 and 3.2 mg kg-1, respectively. In general, the spatial distribution of fluoride in soils showed that fluoride content around major industrial centers such as Isfahan Steel Factory, Mobarakeh Steel Co., and Isfahan oil refinery was higher than other sites. The minimum and maximum fluoride contents of crops were observed in alfalfa as 0.2 and in corn as 4.2 mg kg-1, respectively. Tomato had the highest mean concentration of fluoride as 3.6 mg kg-1. The fluoride concentration in plants positively correlated with the fluoride concentration in irrigation water and soil (P < 0.01) and negatively correlated with cation exchange capacity of soil (P < 0.05).
R. Torki Harchegani, N. Mirghaffari, M. Soleimani Aminabadi,
Volume 23, Issue 2 (Summer 2019)
Abstract

Fruits and citrus wastes are generated in the food industry in large quantities. Their management in Iran, as one of the major hubs of fruits and citrus production, is of great importance. In this study, the biochar samples were prepared from pomegranate, orange and lemon peel waste produced in a juice factory using the pyrolysis process in the range of 400-500 °C; then their efficiency for zinc adsorption from an aqueous solution was investigated. The kinetic and isotherm data of zinc adsorption were fitted by the linear and nonlinear forms of the Langmuir and Frendlich isotherm models and the first-order and second-order pseudo-kinetics models. The results showed that under the experimental conditions applied, the maximum amount of zinc absorption by biochars derived from pomegranate, orange and lemon peel was 2.42, 1.83 and 3.17 mg/g, respectively. The results of adsorption isotherm models also showed that the use of the linear form could lead to a completely different interpretation, as compared to the original form of the model. Based on the linear forms, the Langmuir isotherm was the best; meanwhile, according to the non-linear forms, the Freundlich isotherm was the best model to describe the adsorption data. In addition, the reaction kinetics indicated that both original and linear models had the same results, and the data were better fitted by the pseudo-second order model.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb