J. Abedi Koupai, J. Khajeali, R. Soleimani, R. Mollaei,
Volume 18, Issue 67 (Spring 2014)
Abstract
As increasing of disaster such as drought and pest invasion in recent decades, it is essential to find out practical
approaches in optimizing water use and water management for reduce the adverse effects of this disaster in agriculture.
In order to study the effects of water stress and pest stress on corn yield, an experiment was conducted in the research
farm of Isfahan University of Technology. In sprayed and non sprayed of the field, a factorial design, based on the
completely randomized block, was carried out with three treatments of irrigation regimes including intensive stress
(50% water requirement), moderate stress (75% water requirement) and no water stress in four stages of corn growth
from seed germination until tasseling, from tasseling until milky, from milky until harvest and the whole period of corn
growth, in four replications for one year (2005). The results showed that applying water stress on corn reduced seed
yield between 6-62% and also decreased other agronomic characters except protein percentage. Water stress in non
sprayed condition, reduced significantly more physiological characteristics of corn compared to the sprayed condition.
Intensive water stress and pests stresses increasd 3 and 13% of percentage protein, respectively. In sprayed condition
applying moderate stress in first stages of corn until the first of third stage is suggested in drought condition.
M. Mollaei, H. Bashari, M. Basiri, M. R. Mosaddeghi,
Volume 18, Issue 70 (winter 2015)
Abstract
Soil aggregate stability is considered as a key indicator of soil quality and health assessments in rangelands. Many factors and properties such as soil texture, organic carbon, calcium carbonate, sodium adsorption ratio, and electrical conductivity might affect soil aggregate stability. The effects of these factors on aggregate stability of 71 soil samples collected from 4 rangeland sites (2 in semi-arid and 2 in arid lands) in Isfahan province were investigated. Aggregate stability was measured using the wet-sieving method. To optimize the trial conditions for the investigated soils, three shaking times (5, 10 and 15 minutes) were used to impose different hydromechanical stresses on the aggregates of ten soils selected out of the studied soils. The structural stability was assessed using mean weight diameter (MWD) and geometric mean diameter (GMD) of the water-stable aggregates. Significant differences of MWD were observed between the shaking times. The 10-min shaking was selected as best for structural stability assessment in the studied regions because it resulted in better differentiation of soils on the basis of structural stability. Among the intrinsic properties, soil organic carbon content had the most important role in aggregate stability in all zones. However, electrical conductivity (in addition to organic carbon content) had an important role in aggregate stability in the arid rangelands. Log-normal distribution and GMD could represent better the aggregate size distribution when compared with normal distribution and MWD in the studied regions. Overall, wet-sieving method with shaking time of 10 min is suggested to assess the soil structural stability in rangelands of Isfahan province. Therefore, soil aggregate stability and the factors affecting this vital indicator can be used efficiently for assessing and monitoring management effectiveness and rangeland functionality trend.
R. Mollaei, J. Abedi Koupai, S. S. Eslamian,
Volume 20, Issue 75 (Spring 2016)
Abstract
Water scarcity forced farmers to use wastewater as water source, without considering its effects on environment and resultant contamination of soils and plants especially with heavy metals. The objectives of this study are to evaluate the application effects of zeolite as soil amendments on the uptake of Cd by spinach (Spinach Oleares L.) irrigated with wastewater (containing 10 ppm Cd). Different levels amounts of zeoilte (0, 1% and 5% w/w) were added to the soil and the experiment was conducted as a completely randomized design in a green house with 3 replications. The results indicated that, the addition of zeolite 1% (w/w) in soil treated with wastewater reduced cadmium concentration in plant, and consequently the percentage of extractable Cd using DTPA was decreased. However, application of zeolite 5% (w/w) increased the soil salinity, and as a result increased Cd concentration in the plant but this increase was not statistically significant, comparing with control. Spinach biomass did not differ significantly under irrigation with wastewater, but the Cd available in wastewater caused a decrease in Spinach biomass yield.