Search published articles


Showing 2 results for Mousavi Zadeh Mojarad

R. Mousavi Zadeh Mojarad, S. H. Tabatabaei, B. Ghorbani, N. Nourmahna,
Volume 23, Issue 3 (Fall 2019)
Abstract

Soil water content is the most effective factor associated with the hydrophobic and hydrophilic changes in a soil. Water repellency in soils, is not a permanent feature; it can be reached in the dry season and reduced or eliminated in the wet season It can be said that in terms of moisture, there is a critical region that is defined as the threshold moisture content, where in lower moisture, the soil is repellent and in higher moisture, the soil is wet able. The purpose of this study was to investigate soil moisture variations on degree of hydrophobicity and determine the amount of threshold water content in soil samples of wetland around Shahr-e-Kord. In this study, some samples of Shahr- e-Kord wetland were investigated. After determining the initial moisture content of the soil, the soil hydrophobicity conditions were determined by determining the time of water droplet penetration (WDPT). Soil moisture variations were carried out using soil wetting and drying method, and in each step the soil hydrophobicity conditions were tested. Reducing water content in soil samples, led to a change in the degree of hydrophobicity in hydrophobic samples, in one soil hydrophilic soil sample, Reducing water content changed hydrophilic soil to hydrophobic soil. The threshold water content was also observed up to a maximum of 54% volumetric water content at a given point. Based on this, the higher moisture content of the threshold at this point indicates the higher soil potential for runoff generation. Soil analysis showed that soil organic matter had a positive correlation with threshold water content.

R Mousavi Zadeh Mojarad, S. H. Tabatabaei, N. Nourmahnad,
Volume 25, Issue 2 (Summer 2021)
Abstract

The contact angle is a numerical index of differentiation between hydrophilic and hydrophobic soils. The objectives of this research are: 1) assessing different methods such as capillary rise, the molarity of ethanol droplet, repellency index, and sessile drop, and 2) Determining the most efficient method in a typical soil with sandy loam texture. In this study, hydrophobic soil was hydrophobized artificially using stearic acid and according to the water drop penetration time classification method. Calculated contact angles of hydrophilic soil with capillary rise method, the molarity of ethanol droplet method, repellency index (two methods of calculation), and sessile drop method were 89.9, 75.41, (57.81), 56.28, and 58.91, respectively. Using the contact angle measuring device, the contact angle of five hydrophobic levels were 58.91, 104.92, 120.48, 129.96, and 173.07, respectively. According to the precession of the device where the operator is capable to control data and processes and there is no limitation in usage, therefore, the sessile drop method is the most suitable method to measure contact angle. The contact angle of the late method and water drop penetration data are positively correlated (R2 = 0.975).


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb