Showing 1 results for N. Saleh-Rastin
M. Zarei, N. Saleh-Rastin, Gh. Savaghebi,
Volume 15, Issue 55 (spring 2011)
Abstract
A greenhouse experiment was conducted in factorial experiment arranged as a completely randomized design (CRD) to evaluate the role of tree indigenous arbuscular mycorrhizal fungi (AMF) species originated from a polluted soil in phytoremediation of zinc polluted soils using maize as a host plant. The experiment consisted of plants inoculated with AMF (G1(Glomus intraradices), G2(Glomus mosseae) and G3(Glomus versiforme)) and G0 as non-inoculated plants and 5 levels of zinc (0, 10, 50, 100 and 500 mg kg -1) in non-sterilized sandy loam soil with three replications. According to the results of greenhouse experiment, the zinc and phosphorus uptake and also the biological yield of maize plants were significantly increased by inoculation with AMF in comparison with non-inoculated plants and also no zinc toxicity symptoms were observed. Uptake, translocation, and phytoextraction efficiency of plants inoculated with G. intraradices was more than the other treatments up to the level of 100 mg kg -1, but at the level of 50 mg kg -1 these amounts were highest in plants inoculated with G. mosseae. The efficicncy of three AMF in zinc uptake was highest at the low level of zinc. In general, under the high soil pollution (500 mg kg-1), G. mosseae was the most effective fungal species in Zn extraction and translocation while G. intraradices had the highest effectiveness for accumulation of Zn in the roots. The overall situation of G. versiforme was mostly between the two other fungal species.