Showing 6 results for Naderi Khorasgani
M. Naderi Khorasgani, A. Karimi,
Volume 11, Issue 42 (winter 2008)
Abstract
This research was carried out to study the impacts of geomorphologic characteristics of claypan on land use and land degradation. Databank of the study area was constructed and digital terrain model of claypan was prepared. By using GIS techniques spatial distributions of the subsurface drainage network, sediment transportation index and wetness index were calculated. The results indicate that the depth to the claypan is between 0 (where the pan is exposed at the surface) to 605 cm. There are several depressions in the claypan which are filled by new sediments. Each depression has a catchment which is charged by the drainage water of its attributed lands. While a depression drains naturally or synthetically, the attributed soils over the depression are in non saline or moderate salinity condition otherwise, a marshland, a waterlogging area or a salt crust zone develops over there. The results also indicated that soil surface salinity is a function of depth to claypan and drainage condition of area. The trends of salinity extension are different for closed and open catchments and the depth to the claypan could be estimated using electrical conductivity. The results also show that analysis of microtopography of soil surface and soil stratification should be considered for designing irrigation and drainage networks.
B Atarodi , M Naderi Khorasgani,
Volume 13, Issue 50 (winter 2010)
Abstract
Sorghum (Sorghum bicolor L. Var. Speedfeed) is a major forage crop in Birjand Region, and phosphorus (P) plays an important role in its nutritional value. During a field campaign, eighty soil samples from the region were collected and analyzed. Among them, 24 samples varying in physico-chemical properties and available P were selected. Five extractants were used for measuring sorghum available P as follows: 1) 0.5 M NaHCO3, pH=8.5, shaken for 30 minutes (Olsen's method), 2) 0.5 M NaHCO3, pH=8.5, shaken for 16 hours (Colwel's method), 3) 0.0025 M Na2-EDTA, pH=7 (EDTA method), 4) 1 M NH4HCO3, 0.005 N DTPA (Soltanpour and Schwab's method), and 5) Water (Paauw's method). A greenhouse experiment using a completely randomized design was carried out with 24 soil samples, two treatments of 0 and 90 mg P/kg soil and three replicates. Results indicated that all five extractants are suitable for prediction of sorghum available phosphorus, but Olson and Paauw's methods are preferable. The results also show ed that the critical levels of soil phosphorus for sorghum by Olsen, Colwel, EDTA, Soltanpour and Schwab and Paauw methods are 17, 24, 14, 7 and 2.5 mg P/kg soil, respectively. Statistical analysis indicated that soil pH, clay percentage and organic carbon significantly affected sorghum available phosphorus.
N. Yaghmaeian Mahabadi, M. Naderi Khorasgani, J. Givi,
Volume 15, Issue 58 (winter 2012)
Abstract
Remote sensing has been considered as an appropriate tool for temporal monitoring of some natural phenomena. Ardestan Region is prone to land degradation and masked by sand sheets, sand dunes, clay flats, desert pavement and different kinds of salt crust due to dry climate. To study the trends of land degradation in last three decades, four satellite data sets of Landsat MSS, Landsat TM, Landsat ETM+ and IRS acquired in 1976, 1990, 2001 and 2008, respectively were analyzed. The time series analysis revealed that the bare clayflats have decreased and clayflats with vegetation cover have expanded over 32 years. During this period, the areas which are covered by gravel have decreased 13 percent and both the area covered by salt crusts and aeolians have extended 2 percent. Puffy grounds have developed by 2001 but their magnitudes have decreased between 2001 and 2008 as they have been masked by the moving sand ripples. Reduction of 13 percent of sand sheets between 1990 and 2008 indicates that soil conservation practices have efficiently controlled land degradation and desertification in the area.
H. Basiri Dehkordi, M. Naderi Khorasgani, J. Mohammadi,
Volume 17, Issue 66 (winter 2014)
Abstract
Landslide as a global disaster causes great human and financial damages. Identification of landslide causes and zonation assist in instability control and construction projects siting. This study aimed to identify landslide causes and instability zonation in Ardal county, Chaharmahal va Bakhtiari province, Iran, using Analytical Hierarchy Process (AHP). Current landslides were delineated through field survey and interpretation of Earth Google images and geologic maps. By using Digital Elevation Model (DEM), slope, aspect, geologic, soil, distance to faults, distance to roads, distance to rivers and landuse/landcover maps and expert knowledge, the pairwise comparison matrix was designed. The weights for all the involved thematic maps were calculated and susceptible zones were mapped. The hazard map indicated more than 77% of current landslides are located in the severe and very severe hazard classes. Comparing landslide hazard map and trigger maps revealed the most influential factors in landslides are distance to roads and slope maps while distance to faults and aspect show the lowest impacts on landslides.
S. Dehghani, M. Naderi Khorasgani, A. Karimi,
Volume 26, Issue 3 (Fall 2022)
Abstract
Knowledge of the distribution of heavy metal concentrations in different components of soil particles is significant to assess the risk of heavy metals. The objective of this study was to evaluate some pollution indices and spatial variations in their estimation in different components of soil particle size fractions (<2000 and> 63 μm) in the Baghan watershed in the southeast of Bushehr province with an area of about 929 square kilometers. The location of 120 surficial composite soil samples (0-20 cm) was determined by using the Latin hypercube method. Soil pollution was assessed using geochemical indices of contamination factor (CF) and pollution load index (PLI). The kriging method was used in the Arc GIS software to interpolate the spatial variations of CF and PLI. Based on the results, the CF displayed the particles in the size < 2000 microns compared to all metals in moderate pollution conditions (1≤CF <3) and with the fineness of soil particles (particles with a diameter <63 microns) concerning to Cd metal shows significant contamination status and moderate pollution with other metals, respectively. CFZn, CFCu, and CFFe in particle size <2000 microns and CFPb in finer class were fitted with a spherical model and other metal contamination coefficients with an exponential model. CFCd and CFFe have the highest impact ranges at <2000 and < 63 microns, respectively. The results of this research confirm that corrective operation is needed to monitor cadmium status in the studied area.
M. Naderi Khorasgani, T. Azarbeig, J. Mohammadi,
Volume 27, Issue 3 (Fall 2023)
Abstract
Soil pollution by heavy metals is a significant issue that threatens human health directly and indirectly. The objectives of this research were to map the extension of some heavy metals in soils of a part of Sirjan Plain, Kerman province, to study the role of natural agents on the distribution of heavy metals, and to assess the risk of soil heavy metal concentration for human health. 120 surficial (0-15 cm) compound soil samples were collected during fieldwork. Soil characteristics like soil texture components, pH, electrical conductivity, organic matter, and total soil heavy metal (Fe, Cu, Zn, Cd, and Pb) concentrations were measured using standard protocols. The mapping of soil texture components and heavy metals was done by the usual Kriging method. Results indicated significant correlation coefficients between soil texture components (silt and clay) and total soil Fe and Cu concentrations. Dominant wind direction and spatial distribution of Fe, Cu, and Zn strongly induced the possible dust-born origin of such elements. Results revealed that the sources of Fe, Cu, and Zn were different from those of Cd and Pb. Maximum soil Fe, Cu, and Zn concentrations were in the southern part of the study area, increasing in an upwind direction while for Cd and Pb, maximum soil concentrations were in the northern part of the study area. The Nemerow integrated pollution index revealed that soils were clean for Cd, lowly polluted for Fe, Pb, and Cu, and moderately polluted for Zn.