Search published articles


Showing 5 results for Nael

J. Mohammadi, H. Khademi, M. Nael,
Volume 9, Issue 3 (fall 2005)
Abstract

In order to achieve a sustainable management of land resources and to improve land quality, quantitative assessment of effective factors and soil quality indicators are required. The aim of this study was to evaluate variability of selected soil quality attributes in central Zagros affected by such factors as region, land use and management practices. Twelve sites were selected in three provinces including Chahar Mahal va Backtiari (Sabzku, Broujen), Isfahan (Semirum), and Kohkeloyeh va Boyerahmad (Yasodje). Different management practices were considered such as: protected pasture, intensive grazing, controlled grazing, dryland farming, irrigated wheat cultivation, legume-farming practice, protected forest, and degraded forest. Systematic sampling with taking 50 samples of surface soil in each site was carried out. The results of univariate and multivariate analysis revealed that all factors significantly influenced the spatial variability of selected soil quality attributes namely phosphatase activity, microbial respiration, soil organic matter, and total nitrogen. The results obtained from discriminant analysis indicated that all selected soil quality parameters could significantly be used as soil quality indicators in order to recognize and discriminate sustainable agricultural and forestry ecosystems and/or optimal management practices.
M Nael , A Jalalian1 , H Khademi, M Kalbasi, F Sotohian, R Schulin,
Volume 14, Issue 51 (spring 2010)
Abstract

Geologic and pedologic controls are the main factors determining the behavior of elements in natural soil environments. In order to assess the role of these factors on content and distribution of selected major and trace elements in soil, six parent materials including: phyllite, tonalite, periditite, dolerite, shale and limestone were selected in Fuman-Masule region. Soil genesis and development of representive residual pedons were studied for each parent material and the total content of Si, Al, Ca, Mg, Fe, Ti, Mn, Ni, Co, Cr, Cu, Pb, V and Zn were compared among them. Enrichment/depletion patters of trace elements were assessed using Ti as reference element. Generally, Cr, Ni, Co and V are highest in soils derived from peridotite (984, 285, 53 and 204 mg/kg, respectively) and dolerite (1023, 176, 39 and 185 mg/kg, respectively). In the same way, Si and Al exhibit the features of parent materials in the sense that the lowest content was observed in soils developed on peridotite, dolerite and limestone. Zinc and Pb are highest in soils derived from shale (106 and 27 mg/kg, respectively). In a given pedon, different elements exhibited different enrichment/depletion patterns moreover, a given element may behave differently not only in soils with different parent materials but also, in some cases, in soils developed on similar lithology. Lead, Zn, Cu and Mn have been generally enriched in most pedons, except in some acidic and strongly leached soils, whereas Co, Cr, Fe, Ni and V have been leached, especially from Dystrudepts and Eutrudepts. The latter elements, however, showed enrichment trend in Hapludalfs and Argiudolls parallel to the development of illuvial B horizons.
M. Nael , A. Jalalian , H. Khademi , M. Kalbasi , F. Sotohian , R. Schulin ,
Volume 14, Issue 54 (winter 2011)
Abstract

Geologic and pedologic controls are the main factors determining the distribution of elements in natural soil environments. In order to assess the role of these factors in the content and distribution of major elements of soil, six parent materials including phyllite (Ph), tonalite (To), periditite (Pe), dolerite (Do), shale (Sh) and limestone (Li) were selected in Fuman-Masule region. Soil genesis and development of representive residual pedons were studied for each parent material. Total content of Si, Al, Ca, Mg, Fe, Mn, K, Na, Ti and P of soil horizons were measured and compared to the geochemical and mineralogical composition of parent materials. Maximum concentrations of Fe2O3 and MgO were found in the soils derived from Pe and Do however, these soils had low content of SiO2 and Al2O3, which is in conformity with the geochemical composition of the parent rocks. On the contrary, FeCBD content of these soils was lowest, indicating the low degree of soil development and, by the same fact, the importance of inheritance factor in soil Fe concentration. However, comparison of total Fe and FeCBD in Li1, Sh2 and To2 revealed that relative development of these pedons is higher than the others. Silicon depletion in Ph1, To2 and Sh2 pedons, relative to parent rocks, is higher than in Pe and Do pedons. However, this element is enriched in Li pedons. MnO content of Pe and Do pedons is governed by geogenic factors, while in Sh pedons, pedogenic factors, especially redox conditions, play the major role. Exchangeable forms of Ca and Na are determined by soil properties rather than by parent material type. Notwithstanding the redistribution of all major elements throughout pedons due to soil forming processes, the importance of inheritance factor in soil Si, Al, Mg, Fe, K, and Ti is higher than pedogenic factors.
E. Esfandiary Ekhlas, M. Nael, J. Hamzei, A. A. Safari Sinegani, M. Sheklabadi,
Volume 22, Issue 2 (Summer 2018)
Abstract

Evaluation of the ecological sustainability of different cropping systems is crucial to achieve sustainable agriculture. This evaluation is accessible via soil quality assessment. Therefore, to study the mid-term effects of different conservation tillage systems (no tillage and minimum tillage) and cover cropping on the biological indicators of soil quality, a factorial experiment in a completely randomized block design was conducted in Dastjerd region (Hamedan). Three levels of tillage (NT: no tillage, MT: minimum tillage and CT: conventional tillage) and two levels of cover cropping (C1: Lathyrus sativus and C2: no cover crop) were applied for four consecutive years. Soil sampling was performed in the fourth year of experiment in two steps (1- before cover crop plantation, and 2- after harvesting main crop) with three replications. Most indices (total organic carbon, active carbon, basal respiration, phosphatase activity) were significantly affected by cover crop, tillage systems and sampling time, as the highest values were obtained in NT-C1 in time 2 and the lowest ones in CT-C2 in time 1. For instance, after four years application of treatments, the mean active carbon content was increased from 927 mg/kg in the conventional tillage + no cover crop to 1350 mg/kg in the conservation tillage systems + cover crop. Therefore, conservation tillage practices combined with Lathyrus sativus cover crop were shown to be the most appropriate management for soil quality maintenance and improvement.

A. Safadoust, S. Ghanizadeh, M. Nael,
Volume 26, Issue 1 (Spring 2022)
Abstract

This study was conducted to investigate the effects of vegetation type (Alfalfa and Wheat) and slope (5% and 20%) on runoff and drainage pollution in clay loam soil. Sampled soils were repacked in the box with one soil drainage outlet and one surface flow outlet and were cultivated by wheat or alfalfa. A solution containing 0.05 M KCl was poured quickly and uniformly, over the surface of each box, after plant growth. Simulated rainfall was applied to the soil box with the intensity of a constant rate of 64 mm h-1 for 2 hours immediately. Then the concentration of Cl- and K+ were measured in the collected samples of runoff and the drainage outlet. Results showed that the measured concentration of K+ was lower than the Cl- concentration as a result of its absorbable property. The breakthrough curves (BTCs) of Cl- and K+ showed that slope and vegetation type affected the transport of Cl- and K+. The peak of the BTCs for Cl- and K+ in runoff ranked in the order of wheat and 20% slope> alfalfa and 20% slope> wheat and 5% slope> alfalfa and 5% slope, and in the drainage changed to alfalfa and 5% slope> wheat and 5% slope> alfalfa and 20% slope> wheat and 20% slope. For each slope, the intensive vegetation cover of alfalfa than wheat considerably reduces Cl- or K+ pollution in runoff; whereas drainage development of larger and deeper root systems was the cause of higher leached concentrations for both tracers. Based on our research changes in soil surface vegetation cover from wheat to alfalfa are suggested in slope land to prevent surface water pollution; although other factors such as the climate, soil texture, and structure should also be considered.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb