Showing 7 results for Nazarpour
H. Babaei, N. Ghanavati, A. Nazarpour,
Volume 22, Issue 3 (Fall 2018)
Abstract
Dust particles are suspended particles created from various natural and anthropogenic sources. Dust particles contain toxic metals, such as mercury (Hg), which can have harmful effects on the human health. In this study, to investigate the contamination level of Hg in the street dust in Ahvaz, 95 dust samples were collected from the pavements in the main streets. The concentration of Hg in the collected samples was determined by the atomic absorption method (ASS). The contamination level was estimated based on indicators such as contamination factor (Cf), enrichment factor (EF), geo-accumulation index (Igeo) and ecological risk index (Er). The concentration value of mercury ranged from 0.02 to 8.75 mg/kg with an average of 2.53 mg/kg. The results of pollution indicators showed that the level of Hg contamination in the street dust of Ahvaz was a high level of contamination. In addition, the results of ecological risk assessment indicated that the ecological risk of Hg in the study area was very high. Spatial distribution pattern of Hg concentration showed that in areas with high population density, high traffic volume and industrial activities, there was a high pollution level of Hg.
Miss M. Halil, N. Ghanavati, A. Nazarpour,
Volume 23, Issue 1 (Spring 2019)
Abstract
High concentrations of heavy metals in street dust are considered to be a serious risk to the human health and the environment. In this study, 30 dust samples were collected from the pavements in the main streets of Abadan to determine the level of pollution of heavy metals in the street dust. Heavy metal concentrations were analyzed by inductively coupled spectroscopy (ICP-OES) method. The level of heavy metals pollution was estimated based on enrichment factor, pollution index and Nemro Integrated Pollution Index. The average concentrations of heavy metals such as Pb, Zn, Cu, Cr, Cd, Ni, V, As and Co were 59.13, 287.50, 112.97, 50.03, 0.52, 56.77, 35.83, 7.10 and 7.53 mg/kg, respectively. Based on the average enrichment factor (EF), Ni, Cu and Pb had high levels of contamination and Zn contamination was high. According to the mean of pollution index (PI), heavy metals of Zn and Pb had a high contamination. According to the Nemro Integrated Pollution Index (NIPI), 96.66% of the samples had a high degree of contamination. The spatial distribution pattern of the heavy metals concentration showed that in the areas with high population densities, high traffic volumes and urban shopping centers, heavy metal pollution was severe.
F. Sadeghdoust, N. Ghanavati, A. Nazarpour, Dr Timoor Babaenejad, M. J. Watts,
Volume 23, Issue 3 (Fall 2019)
Abstract
Heavy metals in street dust, as one of the most important environmental consequences of human activities, have attracted many researchers' attention in recent years due to their toxicity and sustainability. Therefore, this study aimed to investigate the hazard of heavy metals (lead, zinc, copper, chrome, cadmium, nickel, vanadium, arsenic and cobalt) on human health in street dust in Dezful. To this end, 30 dust samples collected from sidewalks of main streets of Dezful were analyzed by Atomic Absorption (AAS). The level of heavy metals pollution was estimated based on the pollution index and Nemro Integrated Pollution Index. Moreover, the spatial pattern of the concentrations of metals in street dust was prepared in GIS. The average concentrations of heavy metals in Pb, Zn, Cu, Cr, Cd, Ni, V, As and Co were 54.2, 223.6, 50.6, 44.4, 0.4, 45.8, 37.8, 3.3 and 7.6 (mg/kg), respectively. The average concentration of all heavy metals except As, V and Co in the samples of dust in the city of Dezful was several times higher than that of the background one. Based on the average EF and PI in the target area, heavy metals of Zn and Pb have high contamination. Based on the evaluation of NIPI, 100% of samples have high degree of contamination. The results showed that the source of pollution of the studied metals such as urban transport and burning of fossil fuels was anthropogenic.
N. Ehtemae, N. Ghanavati, A. Nazarpour, T. Babaenejad, M. James Watts,
Volume 23, Issue 4 (winter 2020)
Abstract
Long- term exposure to street dust because of the potential toxicity of heavy metals can cause harmful effects on the human's health by inhalation, ingestion and dermal contact. In this study, 25 dust samples were collected from the sidewalks of the main streets of Ilam and analyzed by inductively coupled spectroscopy (ICP- OES) method. The mean concentration of the studied metals was: Pb (58.80), Zn (213.24), Cu (63.12), Cr (45.84), Cd (0.37), Ni (43.73) V (30.92) and As (5.00) (mg / kg). Based on the average value of the potential ecological risk (Er), the heavy metals of Pb, Zn, Cu, Cr, Ni and V had a low ecological risk and Cd showed a moderate one. The highest non- carcinogenic risk (HQ) in children and adults was related to As through ingestion and Cr through the dermal contact pathway; on the other hand, the lowest amount was due to the Cd via the inhalation. Cumulative non- carcinogenic hazard (HI) of all heavy metals in the street dust have been found to be higher for children rather than adults. In both age groups, Cr and Pb had the highest and lowest risk of carcinogenicity (RI), respectively. The obtained results, therefore, indicate that the main source of heavy metals in the study area is anthropogenic sources such as traffic, industrial facilities and fossil fuels burning.
F. Moradian, N. Ghanavat, A. Nazarpour,
Volume 24, Issue 3 (Fall 2020)
Abstract
Dusts contain heavy metals such as Pb, Zn, Cu, Cr, Cd and As that can threat human's health and environment. Therefore, the spatial distribution of heavy metals concentration and soil pollution monitoring and environmental quality protection seem to be essential. To assess heavy metals pollution level in Ahvaz street dust, 115 street dust samples were collected from main pedestrians. The samples were analyzed by Atomic Absorption (AAS). The pollution level was estimated based on the geo-accumulation index (Igeo), contamination factor (CF) and the enrichment factor (EF). The average concentration values of Pb, Zn, Cu, Cr, Cd and As were found to be 197.6, 150.1, 179.7, 101, 5.6 and 14.2 mg/kg, respectively. Pearson's correlation coefficient also indicated that Pb, Zn, Cu and Cr had a significant correlation showing similar possible anthropogenic sources. On the other hand, Cd and As showed a lower correlation with other metals, indicating that they belonged to the geogenic sources. The results of contamination factor, enrichment factor and geo-accumulation index also indicated that Pb, Zn, Cu and Cd had a high contamination level. Also, areas with high population density, heavy traffic volume, and industrial activities exhibited a high level of heavy metals contamination.
F. Sadeghdoust, N. Ghanavati, A. Nazarpour,
Volume 25, Issue 4 (Winiter 2022)
Abstract
Street dust is mainly affected by the pollution of polycyclic aromatic hydrocarbons (PAHs). PAHs are a group of organic pollutants consisting of two or more benzene rings and are mainly produced during incomplete combustion. PAHs have attracted widespread attention due to their high carcinogenic and mutagenic properties in humans. Therefore, the purpose of this study was to investigate the sources and extent of the impact of these compounds on human health and the environment. To achieve this goal, 30 dust samples were collected from the sidewalks of the main streets of Dezful and the concentration of PAHs was determined by gas chromatography-mass spectrometry (GC-MS). The total concentration of PAHs in street dust of Dezful varied from 562.85 to 51447.10 μg / kg. The ratio of carcinogenic compounds to total PAHs was in the range between 0.73 to 0.91. Low molecular weight and high molecular weight PAHs accounted for 12% and 88% of total PAHs, respectively. The most important sources of PAHs in Dezful are the combustion of fossil fuels and petroleum products and emissions from vehicles and traffic. Moreover, incremental lifetime cancer risk (ILCR) in pathways ingestion in children was higher than in adults, but the ILCR in pathways dermal contact and inhalation in adults was higher than in children. The total cancer risk (CR) for children (5.77×10-3) was higher than adults (5.56×10-3), which shows the high potential for CR in the study area.
F. Golabkesh, A. Nazarpour, N. Ghanavati, T. Babaeinejad,
Volume 26, Issue 2 (ُSummer 2022)
Abstract
The current study aims to find the best methods of using remote sensing and supervised classification algorithms in long-term salinity monitoring of salinity changes in the Atabieh area with an area of 5000 hectares in the west of Khuzestan province. The procedure is based on the separation of different levels of saline soils utilizing information obtained from Landsat 7 and 8 satellite images (2001 to 2015) along with salinity data taken from the study area, and salinity indices including SI1, SI2, SI3, NDSI, IPVI, and VSSI. The results show the expansion of the saline zone trend in the soils of the study area, among which, soils with EC of more than 16 dS m-1 (very saline) have the highest frequency. The area of saline soils has increased significantly over the past 15 years, with a saline land area increasing by more than 90%. The percentage of salinity class is low (S1). According to this study, the only significant index in soil salinity at a 95% confidence level is the SI3 index, which has been able to have a good estimate of the increasing changes in soils in the region. The results of the supervised classification showed that the support vector machine (with an overall accuracy of 95.78 and a kappa coefficient of 0.89) is more accurate. After the vector machine method, the methods of minimum distance, maximum likelihood, and distance of Mahalanobis have the highest accuracy, respectively. Based on salinity maps obtained in years in 2001, 2005, 2010, and 2015, it can be said that the salinity rate in the whole of the study area was progressing and at the same time the salinity area in the middle and high classes increased decreased and on the other hand, the salinity area in the high class in 2001 gradually increased and distributed in 2015 throughout the region.