Search published articles


Showing 5 results for Nikoo

A. R. Nikooie, J. Torkamani,
Volume 6, Issue 2 (summer 2002)
Abstract

Agricultural insurance is one of the appropriate ways to overcome the risk in agricultural production and to increase farmers’ income security. In this study, the influence of wheat insurance, as personal-free insurance, and sugar beet insurance, as group-forcible insurance, on farmers’ risk attitudes in Fars Province were investigated as a case study. Data were collected using stratified multi-stage cluster sampling method and interviews in the years 1375-1376. The sample included wheat and sugar beet farmers in three different climates including Mediterranean, warm sub-desert and cold mountainous in Fars Province. Results of estimating risk aversion coefficients of farmers, using Safety First Rule (SFR), showed that sugar beet forcible insurance along with giving inputs, mechanization services, lookout of farms by sugar plants led to continuous insurance purchase by farmers in consecutive years. Therefore, sugar beet farmers tended to welcome insurance and the effect of insurance on their risk aversion coefficients was positive. However, discontinuity of insurance purchase by wheat farmers in consecutive years and farmers’ lack of confidence in insurace system caused the influence of insurance on wheat farmers’ risk aversion coefficient to be insignificant. Thus, sugar beet insurance type is closer than wheat insurance type to one of the main aims of agricultural insurance system, which is increasing farmers’ tendency to take risks.
A. Solaimani Pour, A. R. Nikooie, A. Bagheri,
Volume 9, Issue 1 (spring 2005)
Abstract

This study was conducted to determine the problems of marketing channels of damask roses and to seek appropriate solutions to enhance marketing efficiency. The results of the study revealed that traditional and industrial rose production lacked the quality demanded by the market. The efficiency index was % 92.9 in traditional and %55 in industrial production. In addition, with regard to the marketing parameters for each type of production, the share of the factors was calculated. So we can conclude that the reducing units have the most important roles in this process. According to the study, traditional units with %47.2 had a greater share compared with the industrial units (%44.5). The results have also shown that production retailer wholesalers and middlemen shares were in the lower ranks respectively. Marketing cost coefficient results showed that %70 of the retailer selling price for 1 kg of the product was related to the marketing costs. The costs for industrial units with high and low capacity were %67.7 and %65.4, respectively.
M. Omidvar, T. Honar1, M. R. Nikoo, A. R. Sepaskhah,
Volume 20, Issue 76 (Summer 2016)
Abstract

At the river catchments, different strategies at the whole or different parts of the basin can be applied for water resources management. One of these strategies is optimal water allocation and crop pattern. In this study, an optimization model for water allocation and cropping pattern is presented based on the cooperative game theory. To measure the performance of the developed model, the cultivated area of Ordibehesht Canal in the Doroodzan irrigation network has been studied. First, using a fuzzy model and considering the fuzzy coefficients values in the objective function and constraints, the optimal crop pattern and allocated water has been determined for each crop. Second, benefits of stakeholder’s coalitions have been determined by developing a cooperative game model and based on the structure and properties of the irrigation water distribution network and water rights of each part. Then, the total net benefit has been reallocated to the different stakeholder in a rational and equitable way using Least Core games. The results show that by allocating more water to the sectors with more potential production, more profits are generated and water productivity increases. For example when players cooperate together and form the grand coalition, the net benefit increases from 8.906 billion Tomans to 9.724 billion Tomans that show an increase in the economic productivity of water.


A. Yousefi, M. Maleki-Zadeh, A.r. Nikooie, M.s. Ebrahimi,
Volume 26, Issue 4 (Winiter 2023)
Abstract

This study determines the amount of irrigation water saved as a result of the subsidy policy to adapt from flood to drip irrigation. We developed a positive mathematical programming model (PMP) to evaluate the effect of economic incentives on farmers’ decisions to choose the type of irrigation technology, cropping pattern, and "water use" and "water consumption" in rural Garkan Shomali district, which is part of the Najafabad aquifer. We collected data through farm surveys, desk research, and expert interviews. The results showed that a reduction in the financial costs of converting flood irrigation into drip irrigation can lead to farmers investing in this technology. In the current water allocation scenario, the subsidy policy increases the water consumption of drip-irrigated crops by 28%, of which 19% is non-consumed water before subsidy payment and the rest is related to the reduction of furrow-irrigated lands. Also, under non-volumetric water delivery conditions, the operating costs reduce and the net income of the farms increases because of the increase in efficiency and the development of the area under cultivation, which increases water consumption while the water use is constant. In the volumetric water delivery scenario, with the increase in subsidies, the net income of the farms will increase without developing the area under cultivation and only because of the increased yield. Therefore, subsidy policy increases irrigation efficiency at both the farm and regional levels and is an effective tool for dealing with drought conditions.

M. Dehghanian, H. Tabatabaee, H. Shirani, F. Nikookhah,
Volume 27, Issue 1 (Spring 2023)
Abstract

In sustainable agriculture, cow manure is used for greater productivity, a rich source of E-Coli pathogenic bacteria. The objective of this research was to investigate the simultaneous effect of the fractionation size of cattle manure and irrigation water salinity on the retention of E-Coli bacteria in the depths of the sand column with a height of 10 cm under saturated flow. Four different particle fractions of cow manure (1-2, 0.5-1, 0.25-0.5, and smaller than 0.25 mm) were added to the surface of the sand column at the scale of 30 tons per hectare, then leaching was done with different salinities (0, 0.5, 2.5, 5, and 10 dS/m) up to 10 pore volumes, then samples were taken from the depths of 0, 3, 6, and 12 cm. The number of bacteria in each sample was determined by the live counting method. The results showed that the effect of all sources of change and their interaction effects on the retention of bacteria in the soil is significant at the level of 5%. Salinity had a negative effect on the retention of bacteria, and the highest and lowest values of the relative concentration of bacteria (the result of dividing the number of bacteria in each soil depth by the initial number of bacteria in the desired manure treatment) were in 0 dS/m and 10 dS/m salinity of leaching water, respectively. By decreasing the size of cow manure particles due to the increase in hydrophobicity and blocking of preferential pores, the retention of bacteria decreased in all investigated soil depths. The highest and lowest retention of bacteria in the soil were investigated in the largest cow manure particle size (1-2 mm) and the smallest cow manure particle size (less than 0.25 mm), respectively. In addition, the highest relative concentration of bacteria in the soil was seen in the depth of 0-3 cm, and no significant difference was seen in other soil depths.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb