Search published articles


Showing 11 results for Nouri

M.z. Nouri-Delawar, A. Arzani,
Volume 4, Issue 4 (winter 2001)
Abstract

This study was conducted to evaluate the response of 18 rice (Oryza sativa L.) genotypes to callus induction and plant regeneration from immature embryo culture, using three media (MS, LS and N6). To evaluate callus induction rate, the following criteria were used: callus diameter, callus fresh weight and callus dry weight. Percentage of callus water content was also measured. After transferring the produced calli from the induction media to a regeneration medium (MSR), percentage of plant regeneration was evaluated.

A highly significant difference was observed among genotypes for both callus induction and plant regeneration (P<0.01). In callus induction phase, “Nemat” and “Cheram-2” cultivars were superior for callus diameter, having 4.83 and 4.6 mm callus diameter, respectively. “Nemat”, “Cheram-2”, “Sepidrood” and “Taroum” cultivars as well as “33IRCTN91” and “IRFAON-30” lines were significantly superior to other cultivars for callus fresh weight. Among the genotypes “Nemat”, “Zayandehrood”, “33IRCTN91” had the highest percentage of callus water contents. Based on plant regeneration, “33IRCTN91” line and “Anbarbo”, “Nemat”, “Cheram-2” and “Taroum” cultivars showed highest rate of plant regeneration from callus. Significant differences were observed among media. While MS and N6 media did not showed any significant differences for callus diameter, callus fresh weight and rate of plant regeneration, they were superior to LS medium (P<0.01). According to percentage of callus water content, MS and LS media ranked the best and the most inferior medium, respectively. In the present study, MS and N6 media were considered as suitable in vitro culture media of rice immature embryos. Among genotypes, “Nemat” and “Cheram-2” cultivars were ranked the best for both callus induction and plant regeneration. Also, the used Japonica rice cultivars were superior for percentage of plant regeneration. The calculated correlation coefficients between traits showed a non-significant correlation between callus induction and plant regeneration, which, in turn, indicated that these traits were independent.


A. Amini Fasakhodi, S. H. Nouri,
Volume 15, Issue 55 (spring 2011)
Abstract

Studying the sustainability of farming systems entails the integrated assessment of the strong interdependence between their environmental, economic and social attributes. Optimum allocation of water resources in a farming system improves the conservation and sustainability status of resources in addition to reducing the socio-economical damages. In order to analyze and assess the different aspects of farm management and agricultural systems planning, a number of mathematical programming models have been developed in recent decades. The purpose of this article was to assess and analyse the sustanability and determine the appropriate pattern of cropping in a rural farming system, namely, south Baraan located in the east of Isfahan city. In order to incorporate environmental, economic and social dimentions, two criteria of maximum net return and employment creation per unit of agricultural water consumption were defined as system’s sustainability indicators. Thus, the ratios “net return / water consumption” and “employment / water consumption” were optimized by using single and multiple objective fractional programming models. The economic and social efficiency of each unit of agricultural water consumption was computed and compared in several single and multiple objective scenarios of linear and fractional programming models, and finally the most appropriate patterns of cropping for the region were determined based on the available land, water and human resources of the region.
A. Mahdavi , M. R. Nouri Emamzadei, R. Mahdavi Najafabadi, S. H. Tabatabaei,
Volume 15, Issue 56 (sumer 2011)
Abstract

In recent years, surface water resources in Chaharmahal and Bakhtiari province have decreased and groundwater level has fallen down. Thus, groundwater must be strengthened by surface water resources. The objective of this search was identification of artificial recharge sites thorough Fuzzy Logic in Shahrekord Basin. Effective factors in ground water recharge such as slope, infiltration rate, thickness of unsaturated zone, surface water EC, land use and stream network were determined. They were classified, weighted in software packages Arc View 3.2a and Arc GIS 9.3 and they were integrated using multiplying operator in fuzzy model. The obtained results showed 4.79 % of all areas are suitable and 17.94 % are somewhat suitable in this method. To include the effect of land use parameter, it was overlaid on the final maps, showing a decrease in suitable areas up to 1/3. Generally about 30 points were introduced with priorities A, B, AB as having potential for artificial recharge.
M. Nouri, M. Homaee, M. Bybordi,
Volume 17, Issue 66 (winter 2014)
Abstract

In order to assess hydraulics of LNAPLs in soil, the soil retention curves of petroleum and water were both determined through hanging column method. And, the hydraulic conductivity of petroleum and water were determined by steady head method. The water and petroleum hydraulic conductivities were 7.27 and 57.84 cm.day-1, respectively. The soil retention parameters were obtained based on van Genuchten, Brooks-Corey and Campbell models. In addition, the soil hydraulic conductivity for both fluids was predicted based on Mualem- Brooks-Corey, Burdine- Brooks-Corey, Mualem-van Genuchten and Campbell models. The accuracy assessment of models was performed by ME, RMSE, CD, EF and CRM. The results indicated that the magnitudes of the pore-size distribution parameters and the bubbling pressure parameters were reduced in NAPL-air system compared to water-air system. Due to unusual hydraulic behavior of petroleum and soil-petroleum interactions leading to remaining substantial petroleum content in porous media, more matric potential is needed to drain out petroleum from soils compared to water. Thus, soil provides more retention for petroleum at a given quantity of fluid. Owing to high amount of petroleum kinematic viscosity, the saturated soil hydraulic conductivity of petroleum was lower than that of water. However, soil hydraulic conductivity for petroleum was larger than water at more than 100 cm matric head.
A. Mohammadkhani, M.r. Nouri Emamzadeh, A. Mirjalili,
Volume 17, Issue 66 (winter 2014)
Abstract

Four partial root zone drying (FULL, 1PRD50, 2PRD50, 3PRD50) treatments were investigated on tomato characteristics and water use efficiency using completely randomized design with five replications. In the control treatment (Full irrigation), all water requirement of plant was met in the root area equally during the growing season. Roots in 1PRD50, 2PRD50 and 3PRD50 treatments were divided into two equal parts and each side of root was irrigated one, two and three times, respectively. Results showed that the highest (44.43 g) and lowest (24.57g) tomato mean weights were obtained at full irrigation and 3PRD50, respectively. Maximum of diameter (43.1 ml) and fruit number (46 No) was observed in the control and minimum of these traits (15.6 ml and 20 No, respectively) was observed in 3PRD50 treatment. There was a highly significant difference between fruit number in all treatments. Highest yield and marketable yield was obtained in the control and 1PRD50 treatment, respectively. The highest irrigation water use efficiency was obtained in 1PRD50 (48 percent more than the control) and the lowest value was in 3PRD50 (27 percent lower than the control). Based on results of this study, partial intermittent irrigation (1PRD50) is recommendable for tomato production.
N. Nourmahnad, H. Tabatabaei, A. R. Hoshmand, M. R. Nouri Emamzadei, Sh. Ghorbani Dashtaki,
Volume 18, Issue 68 (summer 2014)
Abstract

Usually, dry soil readily absorbs water .However, not all soils display such characteristics. Some soils (hydrophobic soils) show resistance to wetting. Because of the importance of this subject and lack of research, we evaluated the effect of heating on water repellency and some of soil physical and chemical characteristics. So soil was combined with compost and heated at deferent temperatures, 100, 200, 300, 400 and 500 °C for 30 minutes in an oven or muffle furnace. The results showed that control treatment and heated soil at 300 °C had WDPT and MED 45 (s), 17% and 80 (s), 23% respectively. So, little water repellency was present prior to heating the soil. When soil was heated up to 300°C, intense water repellency resulted, but it was abruptly eliminated by increasing the heating. The soil texture was changed from loam to sandy loam at high temperatures (400 & 500 °C) and the sand percentage was increased. Organic matter decreased by increasing the temperature. Amount of pH decreased up to 200 °C and then increased at 500°C because of increasing ash in soils. Diminution of mineral and organic matter caused EC to decline in all the heated soils.
Mr A. Nouri Imamzadehei, Manouchehr Heidarpour, M. R. Nouri Imamzadehei, B. Ghorbani,
Volume 21, Issue 2 (Summer 2017)
Abstract

Flood currents are considered threatening factors by creating local scour along bridge piers. One method for decreasing local scour is to strengthen the bed against imposed tensions. Among methods which can directly be appropriate in decreasing and controlling local scour of bridge piers is to employ geotextile around bridge piers. In the present study, the effect of geotextile layer in decreasing local scour of cylindrical single-pier was investigated with the purpose of proposing the best effective method of covering bridge pier. So, layers with circular and oval shapes were put around the pier, in proportion with pier diameter, and the performance of each was compared with the unprotected pier. Test results showed that with installing the oval geotextile layer, final scour depth around the pier reached to 1.25D. Also, comparing geotextile and collar with 2D diameter, the delay of scour process around geotextile was 40 times higher than the collar, but the collar decreased the ultimate scour depth further than geotextile.
 
 


M. Nouri, M. Homaee, M. Bannayan,
Volume 22, Issue 1 (Spring 2018)
Abstract

In this study, the trends of changes of the standardized precipitation index in a 12-month timescale (SPI-12) and seasonal and annual precipitation were investigated in 21 humid and semi-arid stations of Iran during the 1976-2014 time period. After removing the serial correlation of some series, the trend of precipitation and SPI-12 was detected using the Mann-Kendall nonparametric trend test. The results revealed that the trends of annual precipitation had been declining in all stations over the past 39 years.  The seasonal precipitation trend in winter, spring, autumn and summer was downward in approximately 90, 95, 47 and 37% of the studied stations, respectively. In addition, the descending trend of wintertime precipitation was significant in Sanandaj, Khoy, Urmia, Hamedan, Mashhad, Torbat-e-heydarieh, Nozheh and Qazvin. Also, the temporal trend of SPI-12 was decreasing in all surveyed stations except Shahrekord. Furthermore, SPI-12 showed a significant downward trend only in Sanandaj and Fasa. Moreover, the most severe meteorological drought occurred in the period 1999-2000, in Ramsar, Urmia and Hamedan, and in the period 2008-2009, in Tabriz, Sanandaj, Shiraz, Fasa, Qazvin, Mashhad, Torbat-e-heydarieh, Shahrekord, Gorgan and Kermanshah stations. Overall, the results of this study indicated that the trend of precipitation in most studied sites, particularly in semi-arid parts of the northeast and southwest of Iran, has changed due to the severe and long metrological drought that has occurred in the recent decade (2005-2015).
 


P. Shojaei, M. Gheysari, H. Nouri, H. Esmaeili, S. Eslamian,
Volume 23, Issue 3 (Fall 2019)
Abstract

Creation and conservation of urban parks is challenging in arid environments where daily thermal extremes, water scarcity, air pollution and shortage of natural green spaces are more conspicuous. Water scarcity in the arid regions of Iran is major challenge for water managers. Accurate estimation of urban landscape evapotranspiration is therefore critically important for cities located in naturally dry environments, to appropriately manage irrigation practices. This study investigated two factor-based approaches, Water Use Classifications of Landscape Species (WUCOLS) and Landscape Irrigation Management Program (LIMP), to measure the water demand in a botanic garden. The irrigation water volume applied was compared with the gross water demand for the period from 2011 to 2013. On average, WUCOLS estimated an average annual irrigation need of 1164 mm which is 15% less than the applied value of 1366 mm while the LIMP estimate of 1239 mm was 9% less than the applied value. Comparison of estimated and applied irrigation showed that a water saving of 9% can be made by the LIMP method. The outcomes of this research stressed the need to modify the irrigation requirements based on effective rainfall throughout the year, rather relying on long-term average data.

A. H. Nasrollahi, H. Ahmadi, Y. Sabzevari, S. Nouri,
Volume 24, Issue 2 (Summer 2020)
Abstract

The Plant Water Resistance Index (CWSI) is a tool that can be used for the rapid monitoring of plant water status, which is a key requirement for the accurate product irrigation management.The purpose of this study was to calculate the CWSI index for bean hares in the Khorramabad region for two methods of surface irrigation and drip tape ‎irrigation. For this purpose, a design was implemented in the form of randomized complete block design and split plot experiment. The main factors included drip tape irrigation (T) and surface irrigation (F), and the cultivars of Chibi cultivars including COS16 (C), Sadri (S) and diluted (K) served as sub-plots. By using the field measurements, the position of the upper and lower base lines was estimated for each treatment in different months and used to calculate the CWSI index. The results showed that CWSI values calculated in the surface irrigation during plant growth period were always higher than those in the drip tape irrigation. The highest value of CWSI index was obtained for the Sadri variety, which was equal to 0.20 and 0.26, for the type and surface method, respectively. Statistical analysis showed that the effect of irrigation method on the amount of water stress index was significant at 5% level, but there was no significant difference between different cultivars. According to the results of this study, the threshold values for CWSI were considered to be 0.19 and 0.24 for surface and drip tape ‎irrigation respectively, and relationships were presented based on the differences in vegetation and air temperature to determine the irrigation time.

F. Zarei, M.r. Nouri Emamzadehei, A.r. Ghasemi Dastgerdi, A. Shahnazari,
Volume 26, Issue 4 (Winiter 2023)
Abstract

The pattern of root distribution in layered soils is one of the significant issues in the calculations of soil water and irrigation management and planning. The objective of this study was to determine the pattern of root distribution of soybean in layered soils and its effect on water uptake. The research was conducted in a completely randomized design with 15 treatments consisting of three different textures of soil (light, heavy, and medium) in four replications. The pattern of root distribution was monitored by the sampling of columns at the end of the growth period of the soybean. It was observed that the presence of the layer with medium texture has led to better plant development and growth after comparing the treatments in terms of plant growth. In general, root length density decreased with increasing soil depth, except in cases where there were different layers of soil, and root length density takes place in the following order: root length density in layers with medium texture≥ heavy texture≥ light texture. The rate of root water uptake rate was highest in the sandy layers, intermediate in clay, and lowest in loamy texture. Also, the rate of root water uptake rate increased significantly with increasing depth regardless of treatments. It can be concluded that the pattern of root distribution and plant growth is significantly affected by soil texture and its stratification.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb