Showing 16 results for Owliaie
H Owliaie, E Adhami, M Chakerhosseini, M Rajaee, A Kasraian,
Volume 12, Issue 46 (1-2009)
Abstract
Magnetic susceptibility (χ) measurements are widely used for the evaluation of soil profile development. Fourteen soil profiles were studied in a relatively wide range of climatic conditions in Fars Province. Citrate-bicarbonate-dithionite (CBD) extraction and micro CT-Scan images were used to evaluate the source of magnetic susceptibility. The results showed that soil samples lost 23 to 91 percent of their magnetic susceptibility after CBD extraction (χCBD), reflecting differences in the source (pedogenic or lithogenic) of magnetic susceptibility. Greater values of the decrease were noticed mostly in well developed soil profiles as well as in soil surface. 22 to 89% of the decrease was observed in frequency dependence of magnetic susceptibility (χfd) after CBD extraction. A significant positive correlation (P<0.01) was obtained between χCBD and χfd in the soil studied. Micro CT-Scan images with a spatial resolution of 33 µm showed lithogenic magnetic Fe oxide (magnetite) grains.
H. R. Owliaie, E. Adhami, H. Faraji, P. Fayyaz,
Volume 15, Issue 56 (sumer 2011)
Abstract
Trees in many forests affect the soils below their canopies. Analysis of the relationships between trees and soil is one of the basic factors in management and planning of forests. Zagros forest ecosystem is one of the main degrading forest ecosystems in Iran and plays an important role in soil protection. Quercus brantii is the most important woody species in these forests. This study was conducted to determine the influence of oak on selected physico-chemical properties of soils of three oak forests in Yasouj region. The experimental design was a factorial 332 (3 depths, 3 regions and 2 distances) in a randomized complete block design with four replications. Soil samples (0-20, 20-40 and 40-60 cm depth) were taken from beneath canopies and adjacent open areas. The results showed that oak canopy increased mostly organic carbon, total N, available K, P, EC, EDTA extractable Fe, Zn and Mn, while CCE, pH, and DTPA extractable Cu were decreased. Oak canopy had no significant effect on soil texture. Our results suggested that the presence of Quercus brantii individuals may be an important source of spatial heterogeneity in these forests.
M. J. Fereidooni, H. Farajee, H. R. Owliaie, E. Adhami,
Volume 16, Issue 60 (Summer 2012)
Abstract
Effect of urban sewage and nitrogen on soil chemical characteristics in sweet corn was evaluated in Yasouj region at 2009. Five irrigation treatments were managed common water during entire period of growing season as control (I1) urban sewage during the first half of growing season (I2) urban sewage during the second half of growing season (I3) alternate urban sewage and common water (I4) and urban sewage during entire period of growing season (I5) and three nitrogen rates (N0=0, N80= 80 and N160=160 kg N ha-1) in a completely randomized design with three replications. Results indicated that the soil N, P and K concentrations in treatment I5 had a significant difference compared to the other irrigation treatments. Irrigation levels were also exhibited a significant difference in soil organic matter and EC. Maximum and minimum of soil organic matter were observed in I5 (%0.45) and in I1 (%0.33), respectively. Maximum and minimum of soil EC were found in I5 (2.0 dsm-1) and in I1 (1.4 dsm-1), respectively. Irrigation treatments did not show a significant change in soil pH. The effect of irrigation and interaction between irrigation treatments and nitrogen rates were not significant on available forms of Fe, Zn, Cu and Mn in soil. The effect of nitrogen fertilizer was significant on soil N content. Maximum (%0.034) and minimum (%0.030) of soil nitrogen were noticed in N160 and N0, respectively.
H. R. Owliaie,
Volume 16, Issue 62 (Winte - 2013 2013)
Abstract
Iron and manganese oxides as well as hydroxide minerals are among active constituents in soils because they are sensitive to environmental changes and often move frequently along soil profile. Therefore, their chemical forms content and their ratios are used as a soil developmental criterion. The present study was conducted in order to evaluate the effects of topography and drainage conditions on chemical forms of Fe and Mn along a soil catena in Dasht-e- Roum plain, in Kohgilouye Province. According to the results, maximum pedogenic Fe and Mn (Fed and Mnd) was found in more stable geomorphic surfaces. Higher values of Fed and Mnd were mostly observed in surface horizons compared to soil depth. Aquic soils exhibited higher contents of poorly crystalline Fe and Mn (Feo and Mno) and higher contents of Fed and Mnd. A significant correlation between clay content and Feo, Mno, Fet and Mnt contents was found. In addition, aquic condition increased Feo/Fed, Mno/Mnd and Mnd/Fed, 3.1, 4.3 and 1.9 times respectively but decreased the Fe crystallinity index 2.6 times. Aquic soils seem to have more favorable conditions for the formation of pedogenic Mn compared to pedogenic Fe, hence higher content of Mnd/Fed was observed in these soils
H. R. Owliaie, M.najai Ghiri,
Volume 17, Issue 65 (fall 2013)
Abstract
Paddy soils provide the staple diet for nearly half of the world's population. The formation of the Anthrosols is induced by tilling the wet soil (puddling), flooding and drainage regimes associated with the development of a plow pan and specific redoximorphic features. The aim of this study was to evaluate the effects of long-term rice cultivation on physico-chemical properties and clay mineralogy of soils of three rice farms and compare the results with adjacent virgin lands in Yasouj region. Paddy soils exhibited larger contents of clay, organic carbon, saturation percentage, cation exchangeable capacity, cation exchange activity classes, electrical conductivity and lower content of calcium carbonate equivalent compared to non-paddy soils. This land use showed higher proportions of Feo, Fet and lower content of Fed. No such differences were noticed with the type of clay minerals in both land uses. Paddy soils contained greater amount of smectite, particularly in the surface horizons. Smectite in paddy soils exhibited lower layer charge and higher degree of crystallinity compared to non-paddy soils. Transformation of illite and chlorite to expandable minerals is a possible mechanism for lower amounts of these minerals in paddy soils.
H. R. Owliaie, S. Heydarmah, E. Adhami, M. Najafi Ghiri,
Volume 18, Issue 68 (summer 2014)
Abstract
Rate of nonexchangeable K release can significantly influence K availability. Kinetics of K+ release was studied by extraction using 0.01 M CaCl2 in 12 surface calcareous soils of Kohgilouye Province. Results showed that cumulative K release ranged from 89.9 to 460.9 mg kg-1(Average 195.4 mg kg-1). Calcium carbonate, nonexchangeable K, cation exchange capacity and mica showed a significant correlation with K release. Maximum of potassium release was observed in Alfisols, probably because of high amount of clay content and the clay mineral of mica. The amount of K release was in the following order: Alfisols> Entisols> Inceptisols. Elovich, parabulic diffusion and power function equations could reasonably describe the K release kinetics. Fitting the data to these equations indicated that release of K is controlled by diffusion process.
M. Najafi-Ghiri, H. R. Owliaie,
Volume 18, Issue 69 (fall 2014)
Abstract
Although addition of amendment materials to soil is not for changing of soil K status, secondary effects of these materials can be important in K distribution among soluble, exchangeable and non-exchangeable forms. In this research, effect of addition of 2% zeolite, 2% vermicompost and 1% zeolite+ 1% vermicompost on 10 calcareous soils of Fars province belonging to five orders was investigated. The experiments were done as a randomized complete block with three replicates. Samples were incubated at 22±2 °C and 50% of saturated moisture content for 90 days. Then different forms of K were determined in the samples. Zeolite application induced 279 mg kg-1 increase in exchangeable K and 24 mg kg-1 decrease in non-exchangeable K, but it had not a significant effect on soluble K. Although vermicompost application increased soluble and exchangeable K, its effect was more sensible for soluble K (139 mg kg-1). Zeolite+vermicompost application increased all forms of K. Increase in soluble K with vermicompost application may increase risk of K leaching but zeolite application can preserve K in exchangeable phase and inhibit K leaching and fixation.
H. R. Owliaie, M. Najafi Ghiri,
Volume 18, Issue 70 (winter 2015)
Abstract
Topography and land use are among the most important factors affecting the soil formation. Chemical forms of Fe and magnetic susceptibility (χ) are widely used for the evaluation of soil development. This study was conducted in order to determine the effect of these factors on χ. A toposequence was selected in Madvan Plain, Northern Yasouj. Nine soil profiles (paddy and dryland soils) were dug and sampled from diagnostic horizons. Magnetic susceptibility was measured by Bartington Dual Frequency, MS2 Meter at frequencies of 0.46 and 4.6 KHz. Results indicated that less amounts of χ, frequency dependence of χ (χfd%) and CBD extractable Fe (Fed) (3.1, 2.6 and 2.7 times, respectively), and more quantities of oxalate extractable Fe (Feo) and Feo/Fed ratio (5 and 7.2 times, respectively) were measured in paddy soils. The highest value of χ was observed in pedons located on plateau and piedmont plains, and the lowest belonged to those located on river terraces with aquic conditions. Compared to paddy soils, χ enhancement at soil surface was greater (17%) in dryland soils. A positive correlation existed between χ and some soil characteristics such as Fed, clay content and χfd%.
G. Saadaat Zorieyeh, E. Adhami, R. Naghiha, H. R. Owliaie, R. Mostowfizadeh-Ghalamfarsa,
Volume 19, Issue 73 (fall 2015)
Abstract
The present study was conducted to isolate and identify phosphorus solubilizing fungi and to evaluate their ability through a qualitative and quantitative experiment. An experiment was carried out with 5 soil samples of Koh- Sepid Lar, Kohgyloyeh and Boyer Ahmad province. The ability of isolates was studied in solid and liquid cultures. Quantitative experiment consisted of blank, four fungi isolates and Aspergilus niger, with 3 replications. Two fungi that showed the highest potential in P solubilization were used for identification by ITS- PCR methods. Four of the fungi produced very clear zone on the Pikovskaya culture. The order of soluble P content in the liquid culture was: blank< fungi 4< fungi 3< fungi 2< Aspergilus niger< fungi 1. Two high potential isolates, 1 and 2, were Cladosporium cladosporioides and Eupenicillium rubidurum, respectively. This is the first report about the potential of these fungi to solubilize P.
S. Shakeri, S. A. Abtahi, N. A. Karimian, M. Baghernejad, H. Owliaie,
Volume 19, Issue 73 (fall 2015)
Abstract
The aim of this study was to assess the kinetics of nonexcheangable potassium release in surface and subsurface soil horizons, using organic and inorganic extractions, in Kohgilouye-va-Boyerahmad Province. Kinetics of K+ release was studied by successive extractions of K from 64 selective surface and subsurface soil samples, using 0.01 M CaCl2 and 0.01 M oxalic acid, for 1948 h, with two replicates. Nonexchangeable K+ release was fitted by Elovich, Pseudo-first order, Power function and Parabolic equations. Result showed that the average nonexchangeable K+ released (extracted by 1M HNO3) was 356 mg/kg, while those extracted by CaCl2 and oxalic acid after 1948 h were only 58% and 52% of the total amount of nonexchangeable K+ of the soils, respectively. In all soil samples, nonexchangeable K+ released by oxalic acid was less than that released by CaCl2, due to the high buffering capacity resulting from high carbonates in the soils. Potassium release rate in Elovich and Parabolic equations were significantly correlated with non-exchangeable potassium and some physical and chemical characteristics. Based on high Coefficients of determination (r2) and low Standard errors (SE), Elovich, Power function, First order and Parabolic equations were selected as the best equations for prediction of K+ release from the soils.
M. Hosseini, E. Adhami, H. R Owliaie,
Volume 22, Issue 1 (Spring 2018)
Abstract
Cadmium (Cd) is of special importance among heavy metals because its toxicity to the plant is 20 times higher than other heavy metals. The present study was conducted to evaluate the trend of available soil Cd changes over time and its relationship with soil properties. Treatments consisted of 13 soil samples and two Cd rates (12.5 and 25 mg kg-1) as a factorial in a complete randomized design with two replications. DTPA extractable Cd was measured upon 5, 10, 20, 30, 60 and 90 days after adding Cd rates to the soils. The results showed that DTPA extractable Cd was increased as Cd application rates was raised in all soils. DTPA extractable Cd was decreased over time; however, at the end of the experiment, much of the added cadmium to the soil remained in use. Among the soil properties, calcium carbonate showed a significant negative correlation with DTPA extractable Cd in most of the incubation times in both Cd rates. DTPA extractable Cd also showed a significant negative correlation with pH and soil sand and a significant positive correlation with OC. Also, the results of the fitting of cadmium adsorption data with the kinetic equations showed that the exponential function equation was the most suitable kinetics descriptive equation for variations in cadmium adsorption in the studied soils.
A. Cheraghi Tabar, E. Adhami, H. R. Owliaie,
Volume 22, Issue 4 (Winter 2019)
Abstract
The present study was conducted to evaluate zinc availability and forms, as well as their relationships with soil properties in some soil samples of Kermanshah and Ilam provinces. Sequential extraction included Mg(NO3)2 (soluble + exchangeable), NaOAc pH = 5 (carbonatic fraction), Na-hypochlorite at pH = 8.5 (organic fraction), hydroxylamine hydrochloride at pH 2 (Mn oxides associated Zn), hydroxylamine hydrochloride (amorphous Fe oxides associated Zn), ammonium oxalate (crystalline Fe oxides associated Zn), and HNO3 (the residual Zn). DTPA-Zn was in the range of 0.34-3.7 mg/kg. The results showed that soluble+ exchangeable, Mn oxides and crystalline Fe oxides associated Zn were not detectable by atomic absorption. Distribution of Zn fractions was in the order of Organic-Zn < Car-Zn < amorphous Fe oxides-Zn < Res-Zn. Organic matter bound Zn and amorphous Fe oxides associated Zn and the residual fractions showed a significant negative correlation with the calcium carbonate equivalent. It seemed s that calcium carbonates were the major factor in controlling the Zn content in the studied soils.
R. Azadikhah, M. Sedghiasl, E. Adhami, H. R. Owliaie, A. Karami, Sh. Saadipour,
Volume 23, Issue 2 (Summer 2019)
Abstract
The aim of this study was to evaluate the spatial distribution of soil infiltration using geostatistics methods in a regional scale on 400 hectares of Mansour Abad Plain, in Larestan region, Fars Province. Sampling and parameters measurement were done for 78 points in a regular grid with a distance of 100*100 meters; for these variables, the best variogram model between linear, exponential, Gaussian and spherical models with the highest R2 and the lowest error was determined using GS+ and ArcGIS software. In this study, soil infiltration (cm/min) using the double ring method and some other soil properties including soil electrical conductivity (dS/m), pH, saturation percentage (%SP), particle size percentage (sand, silt and clay), and calcium (meq/lit), magnesium (meq/lit), sodium (meq/lit) were measured and determined. The spatial distribution of Kostiakov and Philip models parameters and theri zoning were determined using the geostatistic method. The results showed that, among different soil properties, the final infiltration rate had a high degree of variability in the study area, and the decision was based on the usual averaging methods, which could have a lot of error. Among applied infiltration models, Kostiakov model and Philip model were the best empirical and physical infiltratin models, respectively, in the studied area. The best semivariogram model for the steady state infiltration rate was Philip model, with the coeficients of S and A, and a coefficient of Kostiakove model was gaussian; for the b coefficient, Kostiakove model was exponential. Spatial structure of the final infiltration rate, a and b coefficients of Kostiakove model, and S and A coefficients of the Philip model, was strong. The best interpolation method for the final infiltration rate was cokriging with the cofactor of silt percentage, for the S coefficient of Philip model was inverse distance weighting (IDW); for a and b coefficients of Kostiakove model, kriging and IDW were suitable, respectively.
H. Owliaie, F. Mehmandoost, E. Adhami, R. Naghiha,
Volume 23, Issue 4 (winter 2020)
Abstract
The conversion of forests to agricultural lands generally has damaging effects on soil qualitative indices. This study was conducted to investigate the effects of land use change on the physico- chemical and biological characteristics of the soils of Mokhtar Plain, Yasouj Region. Five soil samples (0- 30 cm) were taken from three land uses of dense forest, degraded forest, and dry farming. The physical, chemical and biological analyses were carried out in a completely randomized design. The results showed that by following the change in the forest land use to dry farming, the EC (56%), organic matter (67%), total nitrogen (71%), exchangeable potassium (48%), Basal respiration (42%), exhaled respiration (63%), fungi community (23%), acid phosphatase (59%), and alkaline phosphatase (79%) were decreased in the dry farming land use. However, the bacterial community (20%) and pH (5%) were increased in the dry farming land use and the amount of available phosphorus did not show any significant difference, as compared to the dense forest. In general, it can be concluded that by following forest degradation and change in land use, soil organic matter and its related indices, especially biological ones, are more affected. So, in order to maintain soil quality, appropriate management practices such as managed land use change, avoidance of tree cutting, especially on steep slopes, preventing of overgrazing, and addition of organic matter should be carried out in dry farming land use.
S. Falahati, E. Adhami, H. Owliaie,
Volume 27, Issue 1 (Spring 2023)
Abstract
Due to the importance of nickel (Ni), and the effect of common soil additives on Ni fractions distribution, the present study was conducted to evaluate the effect of zeolite and vermicompost on nickel fractions over time. The experimental design consisted of a factorial combination of two levels of vermicompost (zero and 2% by weight), three levels of zeolite (zero, 4% by weight of Firoozkooh zeolite, and 4% by weight of Semnan zeolite), and two soil texture (clay and sandy loam) in a completely randomized design in triplicates. Treatments were contaminated with 50 and 100 mg nickel/kg soil. Ni fractions were extracted and measured at 20 and 60 days. The results showed that in initial soils, Car-Ni in sandy loam soil was higher than in clay soil, while the content of Fe, Mn- Ox Ni, OM-Ni, and Res-Ni in the clay soil was higher. In sandy loam soil, more nickel was recovered in Exch- and Car-fractions, while nickel recovery was higher in Mn, Fe-Ox Ni, OM-Ni, and Res-Ni in the clay texture. Zeolite addition caused a significant decrease of Exch- and Car-Ni in the clay soil on 60d and 100 mg/kg Ni level. Exch-Ni was reduced due to vermicompost application. Vermicompost application caused the decrease in Fe, Mn Ox-Ni in both studied soils and times, and OM-Ni increased by vermicompost application. Aging generally reduces the Exch-Ni but changes in Car-Ni over time depending on the soil texture. Aging did not affect Mn, Fe-Ox Ni, and Res-Ni, while OM-Ni increased over time in clay soil.
H.r. Owliaie, E. Adhami, M. Najafi Ghiri,
Volume 27, Issue 3 (Fall 2023)
Abstract
Soil resources are important components of the ecosystem, and therefore, their quality should be considered. One of the important factors affecting the quality of soils is land use change. The present study was conducted to investigate the effects of land use change and deforestation on some soil fertility and biological characteristics in the forest area of the Yasouj region. In this area, four land uses of dense forest, sparse forest, deforested (degraded) lands, and rainfed agriculture were randomly sampled from two slope classes. In each land use 10 soil surface samples were taken. Fifteen soil fertility and biological characteristics were measured using routine methods. The results showed that dense forest and deforested (degraded) lands had the best and worst conditions, respectively, in terms of the measured parameters. Among the measured characteristics, the values of alkaline phosphate, exhaled respiration, nitrogen, basal respiration, acid phosphatase, manganese, and zinc showed the greatest decrease respectively, and the values of phosphorus and potassium exhibited the least decrease, as a result of land use change from dense forest to degraded lands. The findings showed that the conversion of ecosystems such as forests to agricultural lands or deforestation has led to a severe decrease in the fertility and biological indicators of soil quality. Therefore, the protection programs of these areas should be more considered.