Search published articles


Showing 4 results for R. Bagheri

M. R. Khajehpour, A. R. Bagherian Naeni,
Volume 5, Issue 4 (winter 2002)
Abstract

It is believed that various types of field bean, including pinto, white and red, differ in adaptability to high temperatures and may, thus, differ in response to delay in planting. In order to evaluate this response, an experiment was conducted during 1996 at the Agricultural Research Station, Isfahan University of Technology, using a randomized complete block design with split-plot layout. Main plots consisted of four planting dates (April 28, May 13 and 28 and June 13) and sub-plots included four genotypes of common bean (red bean, c.v. Naz pinto beans, experimental lines 11816 and 16157 and a white bean, experimental line 11805).

 Number of branches per plant, number of pods per branch and per unit area, number of seeds per pod of main stem and branch, number of seeds per main stem, per branch and per unit area, 100-seed weight and seed yield significantly reduced, while harvest index significantly increased by delay in planting and consequent increases in temperature and reduction in time for growth. The lower harvest index obtained with early planting was the result of the lower efficiency of the produced vegetative growth due to the coincidence of seed filling period with high temperatures. Pinto bean line 11816 ranked the highest for number of branches per plant and harvest index among the genotypes evaluated and produced the highest seed yield (3030 kg ha-1). Although red bean Naz ranked the highest for number of pods and seed per main stem and per unit area, it had the lowest harvest index and 100-seed weight and, consequently, produced the least seed yield (2254 kg ha-1). The results obtained indicate that delay in planting adversely affects bean seed yield. Pinto bean line 11816 may have higher yield potential among the genotypes studied at all planting dates under conditions similar to the present experiment. No specific relationship was observed between apparent seed characteristics and plant tolerance to heat.


S. M. A. Zomorodian, M. R. Bagheri Sabzevari,
Volume 9, Issue 4 (winter 2006)
Abstract

The vertical pipe intake is an economical structure relative to the other alternatives. VPI usually installed near the water surface and prevents from the coarse sediment entrance to the system. The strong vortex in VPI entrance is a major problem which may reduce the system efficiency. Recognizing the vortex affected parameters, helping engineers to design anti vortex structures. In this study an experimental model is built to study the effect of tangential velocity, flow direction at approach channel outlet on the discharge coefficient of vertical pipe intake. By dimensional analysis it is indicated that the vortex in VPI could be defined by the dimensionless numbers (Reynolds, Weber, Froude, Circulation and Submergence). The relationship between the Froude, Circulation and Submergence numbers are presented. By using this relation one can determine the Submergence number and then calculate the discharge coefficient of vertical pipe intake.
H. R. Bagheri, G. Saeidi, P. Ehsanzadeh,
Volume 10, Issue 3 (fall 2006)
Abstract

Safflower (Carthamus tinctorius L.) is an oilseed crop and can have a considerable contribution to vegetable oil production in the country, since it has a high adaptability to different environmental conditions. This crop is grown in summer time as a second crop in Isfahan province. Therefore, this study was carried out to investigate the agronomic characteristics of the safflower breeding lines which were isolated from local populations of Iran in early spring and summer planting dates. Seven genotypes were evaluated at two planting dates, early spring (16 March) and summer (21 June), using a randomized complete block design (RCBD) with 4 replications at the research farm of Isfahan University of Technology. The results showed that the number of days to emergence, days to flowering and maturity and plant height decreased considerably in the summer planting date. However, the harvest index, seed yield per plant and seed yield per plot and oil yield increased in this planting date. Yield components were not significantly different in the two planting dates, except that 100-seed weight was significantly and considerably more in the second planting date. The average seed yield of genotypes was 2498 and 2845 kg/ha in spring and summer planting dates, respectively. In the first planting date, seed yield varied from 1876 Kg/ha, (for Kouseh genotype as check variety) to 2908 Kg/ha for E2428 line (selected from Isfshan population). In the second planting date, seed yield had a variation of 2124 to 3186 Kg/ha for the genotypes of S3110 (selected line from Khorasan population) and C111 (selected from Kouseh population), respectively. In the second planting date the check variety (Kouseh population) had a seed yield of 2965 Kg/ha. In both first and second planting dates, genotypes of E2428 and C116 (selected line from Kouseh population) had the maximum oil content in the seed, (33.9% and 32.3%د respectively). Genotype by planting date interaction was significant for seed yield and oil yield, since late planting date reduced seed yield in genotypes of S3110 and E2428, but it increased these traits in other genotypes.
R. Bagheri, Gh. Akbari, M. H. Kianmehr, Z. Tahmasebie Sarvestani,
Volume 16, Issue 59 (spring 2012)
Abstract

To evaluate the effect of nitrogen slowly released from pellet, composed of manure and urea fertilizer on the Nitrogen efficiency and morphological Characteristics and grain yield of corn hybrid (S.C704), a field experiment was carried out in Aboureihan research farm of Tehran University in 2009. The factorial design of the study comprised a randomized complete block with three replications. The application rates of N at four levels (46, 92, 138 and 184 kg N. ha-1) and two levels by methods of N distribution (pellet and mixed with soil) were applied. In this research, a Screw Extruder setup was designed and manufactured. Statistical analysis indicated that NUE, as well as agronomic efficiency (AE) was reduced while physiological efficiency (PE) increased with increasing N rates. Also, most plant length and stem diagonal and cob diagonal pellet belonged to the treatment. But, the number of leaves per plant did not affect the distribution method of fertilizer.The results showed significant differences among various rates of nitrogen and methods of N distribution considering grain yield and grain protein. The higher rates of N increased grain protein, grain yield and yield components (except for number of rows per ear). Maximum grain yield (11.1 t. ha-1) was obtained with 184 kg N. Ha-1 treatment.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb