Search published articles


Showing 5 results for Rasouli Sadaghiani

M. Rahmanian, H. Khodaverdiloo, M. H. Rasouli Sadaghiani, Y. Rezaie. Danesh, M. Barin,
Volume 15, Issue 58 (winter 2012)
Abstract

Arbuscular mycorrhizae (AM) and Plant Growth Promoting Rhizobacteria (PGPR) associations are integral and functioning parts of plant roots. These associations have a basic role in root uptake efficiency as well as improvement of plant growth in degraded environments including heavy metals contaminated soils. This study was conducted to evaluate the effects of heavy metal-resistant soil microbe's inoculation on bio-availability of Pb and Cd in soil, plant growth as well as metal uptake by Millet (Pennisetum glaucum), Couch grass (Triticum repens) and wild alfalfa (Medicago sativa). A soil sample was treated by different levels of Pb and Cd (soil 1). Native microbial inoculums were obtained from alfalfa rhizosphere soils adjacent to Pb and Cd mines in Zanjan region (soil 2), then added with weight ratio of 1:5 (w/w) to soil 1. Host plants including millet, couch grass, and alfalfa were grown in pots and kept in greenhouse conditions. At the end of growing period, shoot dry matter and Pb and Cd concentrations in plant and soil were measured. Results indicated that plants yield and Pb uptake were significantly higher in non-inoculated treatments (p ≤ 0.05). However, Cd uptake by plants was greater in inoculated treatments (p ≤ 0.05). Couch grass showed the most accumulation potential of Cd and Pb among the studied plants.
Sakineh Abdi, Mehdi Tajbakhsh, Babak Abdollahi Mandulakani, Mirhasan Rasouli Sadaghiani,
Volume 17, Issue 64 (summer 2013)
Abstract

The incorporation of plant residues in soils of arid and semiarid regions is a major principle of sustainable agriculture. This study was conducted at the research farm of Urmia University (37° 32’N and 45° 5’ E), Urmia, Iran during the 2009 and 2010 growing seasons. Five green manure crops were grown in four replications arranged in a randomized complete block design. The treatments included white clover (T.repens), sainfoin (Onobrychis viciaefolia), pearl millet (Panicum miliaceum), sorghum (Sorghum bicolor) and turnip (Eruca sativa). Changes in soil nutrient elements and nitrogen mineralization were measured during different time periods after plant residues incorporation to soil. The plants were irrigated 50% of field capacity during growing period. The results showed that the total nitrogen and NH4-N were influenced by type of green manure in both years. The lignin and cellulose were the main factors controlling N mineralization and residue decomposition. In the first and second year, the results indicated that pearl millet green residues resulted in the highest amount of soil organic carbon. Nitrate-N content reached the highest amount in sainfoin and white clover. In conclusion, white clover and sainfoin due to increasing total and mineral nitrogen for subsequent plants could be introduced as a proper green manure in water deficit conditions.
Mh. Rasouli Sadaghiani, S. Sadeghi, M. Barin, E. Sepehr, B. Dovlati,
Volume 20, Issue 78 (Winter 2017)
Abstract

Potassium is the most abundant nutrition element in the surface soil but most of the potassium is unavailable to the plants. The present study was conducted with the aim of isolation of potassium solubilizing bacteria from rhizosphere soil and evaluation of quantitative ability of released potassium from different sources of silicate by strains. For this propose, laboratory and greenhouse evaluations were carried out on corn (Zea mays L. Cv. single cross 640 (as a factorial in a completely randomized design with three replications. Laboratory factors were potassium sources (four levels), incubation time (seven levels) and microbial inoculation (six strains) and greenhouse factors were potassium sources (five levels) and microbial inoculation (four strains). The results showed that among the bacterial strains KSB13 had maximum dissolution diameter (25 mm) and solubilisation index (SI=3). The highest potassium content (3/32 µg/mL) was released from biotite by strains of KSB10 after ten days incubation. The microbial inoculation increased root dry weight and plant height for 30 and 25 percent, respectively, compared to control treatments. Also the mean shoot dry weight and K content in microbial treatments of silicate minerals were respectively increased 3/75 and 1/57 times higher than control treatment. It can be concluded that microbial inoculation causes potassium release from silicate minerals and improved plant growth.


R. Vahedi, M. H. Rasouli Sadaghiani, M. Barin,
Volume 23, Issue 1 (Spring 2019)
Abstract

The pyrolysis of fruit trees Pruning waste to be converted to biochar with microbial inoculation is a strategy improving the biological properties in calcareous soils. In order to investigate the biochar effect on some soil biological properties of the soil in the presence of microorganisms, a factorial experiment was carried out in a completely randomized design in the rhizobox under greenhouse condition. The factors included organic matter (pruning waste biochar and control), microbial inoculation (arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria) and soil (rhizosphere and non-rhizosphere). After the end of the wheat plant growth period, microbial respiration (BR), Substrate-induced respiration (SIR), microbial biomass carbon (MBC), microbial biomass phosphorus (MBP), acid phosphatase (ACP) and alkaline phosphatase (ALP) enzymes in the rhizosphere soil and non-rhizosphere soil were determined. The results showed that the biochar and microbial inoculation application increased BR, SIR, MBC, MBP and ALP and decreased ACP, as compared to the control. So, the highest increase in the value of BR, SIR and MBC was related to mycorrhizal inoculation with biochar. An increase of 2.67 fold of ACP activity was observed in the treatment of bacterial inoculation with Biochar, as compared to the control treatment. Also, pruning waste biochar increased the amounts of MBC, MBP and ALP by 45.62%, 56.22% and 62.6% in the rhizosphere soil rather than non-rhizosphere soil, respectively. Microbial inoculation led to the increase of 1.31 and 1.41 folds by MBP and ACP in the rhizosphere soil, as compared with non-rhizosphere soil. Bacterial inoculation in the rhizosphere soil increased the ACP enzyme activity (28.31%), as compared with non-rhizosphere soil. It could be concluded that application of biochar in the conditions of microbial inoculation improved the soil biological properties.

R. Mousavai, M. Rasouli Sadaghiani, E. Sepehr, M. Barin,
Volume 27, Issue 1 (Spring 2023)
Abstract

can provide useful information about P adsorption and the factors affecting it. A batch experiment was performed with phosphorus concentrations (0 to 35 mg/L) in two soils with different electrical conductivity (EC) (2 and 15 dSm-1) by a variety of biochar treatments including simple apple-grape biochar (BC), rock phosphate- biochar (BC-RP), enriched-biochar (BC-H3PO4-RP), enriched-biochar (BC-HCl-RP), triple superphosphate (TSP), and control (Cont). The results indicated that phosphorus sorption capacity varied between the soils. Biochar treatments were effective in reducing the phosphorus adsorption of both soils. Due to BC-H3PO4-RP and BC-HCl-RP treatments, the maximum phosphorus adsorption of soils decreased in S1 soil by 14 and 23 % and in S2 soil by 26 and 19%, respectively. Also, the use of these treatments decreased the parameters of Langmuir absorption intensity (KL) of S1 soil to 0.085 and 0.066, respectively and S2 soil to 0.11 and 0.15, L/mg respectively, and Freundlich absorption capacity (KF) of S1 soil decreased to 19.2 and 22.5 and S2 soil to 28.2 and 28.1 L/kg, respectively. Enriched biochars significantly reduced the buffering indices of both soils indicating phosphorus adsorption decreased and increased the availability of phosphorus for the plant. The standard phosphorus requirement of S2 soil was lower than S1 soil by both equations. Therefore, enriched biochar can be an effective strategy to increase phosphorus availability and reduce the use of chemical fertilizers in saline and non-saline conditions; however, more field studies are needed for a clear understanding of the potential of P-enriched biochar as a fertilizer alternative.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb