Search published articles


Showing 3 results for Rejali

V. Dorostkar, M. Afyuni , A. H. Khoshgoftarmanesh, M. R. Mosaddeghi , F. Rejali,
Volume 19, Issue 73 (fall 2015)
Abstract

Arbuscular mycorrhizal fungi (AMF) are widespread endosymbionts in terrestrial ecosystems and their exudates have important effects on soil properties. A greenhouse experiment was conducted with six AMF treatments including four exotic species inoculums (Funneliformis mosseae ,Claroideoglomus claroideum  and Rhizophagus irregularis and a mixed isolate of three species), one mixed native AMF species treatment and a sterilized soil (control) with four salinity levels (1, 5, 10 and 15 dS m-1). AMF increased the soil (EEG) and total (TG) extractable glomalin, and also the hot water (HWC) and diluted acid (DAC) extractable carbohydrates compared to control treatment in all salinity levels. The native AMF species had the greatest effects on EEG, TG, HWC and DAC at 10 and 15 dS m-1. Soil EEG and TG concentrations were higher in the mixed exotic AMF treatment than in each AMF species. The greatest glomalin concentration was related to F. mosseae at 1, 5 and 15 dS m-1 but at 10 dS m-1 the greatest glomalin concentration was related to C. claroideum. The greatest carbohydrate concentration was related to F. mosseae at 1 and 5 dS m-1 but at 15 dS m-1 significant differences were observed among the three AMF species. Our results showed that there is an interaction between salinity and different AMF species, and a combination of them determines the function of AMF.


C. Tofighi, R. A. Khavari-Nejad, F. Najafi, Kh. Razavi, F. Rejali,
Volume 22, Issue 2 (Summer 2018)
Abstract

Salinity adversely affects crops metabolism and yield. The present work was conducted to evaluate the singular and interaction influences of Arbuscular mycorrhizal (AM) fungi and brassinolide, as an active group of (brassinosteroids) BRs, on some physiological parameters of wheat plants to cope with salt stress14-day old mycorrhizal (Glomus mosseae) and non- mycorrhizal wheat (Triticum aestivum L.). Plants were foliar sprayed with 0 and 5 µM epibrassinolide 3 times once every two days. Then, each group was treated with 0 and 150 mM NaCl once every 3 days for 10 days. After salt treatment, some plants were harvested to estimate the leaf reducing sugar and glycine betaine contents. After the final growth, all wheat plants were harvested to measure some yield parameters. Synergistic influence of brassinolide and AM fungi was observed in protein and 1000-grain weight. It seemed that this was rooted in the increased accumulation of reducing sugars and glycine betaine, both helping to maintain osmotic potential in cells under high salinity in soil.

H. Aalipour, A. Nikbakht, N. Etemadi, M. Soleimani, F. Rejali,
Volume 23, Issue 2 (Summer 2019)
Abstract

Trees decline is a complex physiological disease that results from the interactions between several factors, one of which is heavy metal stress that ultimately leads to the death of trees. This experiment, which was conducted during 2016-2017 at the campus facility of the Department of Horticulture at Isfahan University of Technology, was conducted to investigate the effects of inoculation with arbuscular mycorrhizal fungi (AMF) (Rhizophagus intraradices and Funneliformis mosseae inoculated, and the combination of both species) and plant growth promoting rhizobacteria (PGPR), Pseudomonas Flourescens, on the growth responses of Arizona cypress (Cupressus arizonica G) to different concentrations of cadmium (0, 5, 10, 15, 20); this was done as a factorial experiment based on a completely randomized design, with three replications. The interactions between AMF, PGPR, and cadmium on potassium and iron concentration, height, and dry weight of Arizona cypress seedlings were significant. By increasing the concentration of cadmium in most of the treatments, the colonization, phosphorus, potassium and iron concentrations, height and dry weight of the shoot Arizona cypress seedlings were decreased, while the percentage of electrolyte leakage and proline content were increased. The AMF-inoculated plants increased phosphorus, potassium and iron concentrations, Height, shoot dry weight, proline content and reduced electrolyte leakage percentage, as compared to non-mycorrhizal (control) plants. In plants inoculated with both microorganism (mycorrhizal fungi and Pseudomonas), there was a positive effect regarding the concentration of nutrients such as potassium and iron; there was also the improvement of growth characteristics such as height and dry weight of the seedlings, as well as the appearance and freshness of the plant. The results, therefore, showed that inoculation of Arizona cypress seedlings with the combination of mycorrhizal fungi and Pseudomonas fluorescens bacteria could have a positive effect on the growth and survival of this tree under Cadmium stress condition.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb