Showing 4 results for Rezainejad
Majid Afyuni, Yahya Rezainejad, Babak Khayambashi,
Volume 2, Issue 1 (spring 1998)
Abstract
Land application of sewage sludge is potentially beneficial as an inexpensive nutrient source. However, problem with the use of sludge may exist from high soil concentrations and subsequent uptake of heavy metals by plant and entering of the metals into the human and animal food chains. A field study with lettuce (Lactuca sativa L.) and spinach (Spinacia oleracea L.) was conducted to examine uptake of heavy metals from a sludge amended soil as affected by sludge rate and time of sludge application. Sludge rates were 0, 22.5, and 45 ton/ha. To determine the effect of time on heavy metal uptake, a year after the first plants were harvested, one third of each plot was planted without sludge application and to the rest of each plot sludge was added in the same rates as before. Total and EDTA-extractable Cu, Zn, Pb, and Cd concentrations in soil were determined. The metal concentrations in shoots and roots of the plants were determined separately. Total metal concentrations showed an increasing trend with addition of sewage sludge. Copper, Zn, and Pb EDTA-extractable concentrations in soil and concentrations of these metals in the plants increased significantly with sludge rate. Time of sludge application did not have any significant effect on EDTA-extractable and plant uptake of metals. Sewage sludge also increased the crop yields significantly.
M. Karami, Y. Rezainejad, M. Afyuni, H. Shariatmadari,
Volume 11, Issue 1 (spring 2007)
Abstract
Sewage sludge application on farmland as fertilizer is commonly practiced in many countries. Sewage sludge is rich in macro- and micro- nutrients. However, high concentration of heavy metals in sludge may cause pollution of soil, groundwater and human food chain because of uptake of toxic metals by crops. The objective of this study was to determine residual and cumulative effects of sewage sludge on concentration of Pb and Cd in soil and wheat. Different levels of 0, 25, 50 and 100 Mg ha-1 of sewage sludge were applied to the soil for four years. To study the cumulative and residual effects of the sewage sludge, applications were repeated on three fourth of each plot in the second year, on one half of plots in the third year and in one fourth of plots in the fourth year. Wheat grown in the plots, after the fourth year, soil samples from the 0-20 cm depth of the different parts of the plots were taken and analyzed. Wheat was also harvested roots, stems and grains were separately analyzed for the heavy metal concentritons. Cumulative sewage sludge application increased OM, CEC, ECe, total and DTPA-extractable concentration of Pb and Cd in soil significantly (P≤ 0.05). Residual sewage sludge in the soil also increased CEC, total and DTPA-extractable concentration of Pb and Cd significantly. Single sludge applications at different rates increased the DTPA-extractable concentrations of heavy metals. In subsequent years with no further sludge application, DTPA–extractable metal concentrations in soil decreased continuously approaching the levels in the control. However, even after four years, DTPA-extractable concentration of Pb and Cd, were still significantly higher in plots which received more than 50 Mg ha-1 sludge than control. DTPA-extractable concentrations of Pb was closely correlated with total concentrations. Sewage sludge increased concentration of Cd in roots and stems and Pb in grains significantly. Cumulative effects on concentrations of Pb in grains, and Cd in stems were more than residual effects. The results of this study show that cumulative and residual effects of sewage sludge application increased concentrations of heavy metals in soil and wheat.
A. Jafari, H. Shariatmadari, H. Khademi, Y. Rezainejad,
Volume 12, Issue 44 (summer 2008)
Abstract
Mineralogy is one of the most influential soil properties that change from upper- to lower slope positions, depending on the climate differences. Such changes affect soil properties such as phosphorus sorption and desorption processes differently. Therefore, this study was carried out to investigate the clay mineralogy of soils in four toposequences from arid (Isfahan) and semiarid (Chaharmahal Bakhtiari) regions and its effect on soil P release. The soils of three points on each toposequence were sampled as the upper-slope mainly containing parent materials the mid-slope, non-arable lands and the lower-slope, arable lands. Some of soil properties such as clay minerals were determined. Also, trend of P release parameters was studied in four toposequences. Results showed that the amount of clay, cation exchange capacity (CEC), electrical conductivity (EC), and pH of the soils increase down the slope in all toposequences. X-ray diffractograms showed that kaolinite and illite in upper slope and smectite and chlorite in lower slope were the predominant clays. Among the kinetic models examined based on their determination coefficient and standard error, the Elovich equation was chosen to describe the P release kinetics in studied soils. The trend of P desorption rate along the arid toposequences was in the following order: upper-slope < mid-slope < lower-slope. Furthermore, the rate of P desorption in soils of the semiarid toposequences was higher than arid toposequences. Regarding the trend of P rate parameters along the toposequences, it could be concluded that P release rate and the soil capacity to supply P for plants increase toward lower slope.
H Shariatmadari, Y Rezainejad, A Abdi, A Mahmoudabadi, M Karami,
Volume 12, Issue 46 (1-2009)
Abstract
Many researchers have reported positive effects of converter sludge and slag, two by-products in Isfahan iron melting factory. In this work, the optimum rate of application and the availability of some essential elements (for plant growth) in the converter sludge and slag for corn were investigated. The converter sludge contains about 64% Fe ІІ and ІІІ oxides and some other essential elements for plant growth. The slag also contains 17% iron oxides, 52.8% calcium oxide as well as considerable amounts of some other elements. Treatments included a control, Fe-EDTA foliar spray with 5 in 1000 concentration, application of sludge in 4 levels (L1, L2, L3 and L4 equal to 5.83, 13.33, 20.83 and 26.67 ton/ha, respectively) and application of slag in 4 levels (S1, S2, S3 and S4 equal to 3.20, 7.28, 11.36 and 15.44 ton/ha, respectively) which supply 1, 2, 3 and 4 times as much as soil test recommends, based on AB-DTPA extractable Fe in the soil. Corn (Zea mays) single cross 704 was planted for the experiment. Applications of the two compounds increased the soil extractable Fe and Mn, decreased Mg but the treatment did not change the soil-extractable Zn, Cu and Ca. The corn yield also increased due to the applications of the two compounds and the maximum yield was related to L3, L4, S3 and S4 treatments. The foliar application treated the leaf chlorosis and increased the silage, grain and leaf + stalk yields however, this was not as efficient as sludge and slag application. Also applications of the two compounds increased the Fe, Mn, Zn, Cu, Ca and Mg uptake by corn. The L3 and S3 treatments can be recommended as the proper levels of these compounds as iron fertilizer.