Search published articles


Showing 7 results for Saeed

Mohammad Loghavi, Saeed Behnam,
Volume 2, Issue 4 (winter 1999)
Abstract

The effects of three levels of soil moisture content (10 - 12, 13 - 15 and 16 - 18% d.b.) and three levels of plowing depth (15, 20 and 25 cm) on draft, specific draft, and drawbar power requirements of a 3 - bottom disk plow and on soil pulverization and inversion in a clay loam soil were investigated. The experimental design was a randomized complete block design with a 3 × 3 factorial. Except in soil inversion, the effect of soil moisture on all of the performance parameters mentioned, was highly significant. Mean values of draft, specific draft and drawbar power requirements and clod mean weight diameter were minimized at 13 - 15% and 16 - 18% soil moisture contents, respectively. The effect of plowing depth was highly significant only on draft and drawbar power requirement of disk plow, in such a way that the mean values of these two parameters were significantly increased with plowing depth, while specific draft showed only a mild decreasing trend. In order to provide a quantitative index to express the degree of soil pulverization by tillage implements, a tractor-pulled rotary sieve was designed and fabricated. With this apparatus, in-field determination of soil clod mean weight diameter (MWD) following plowing was possible. The results showed that the effect of soil moisture content on MWD was highly significant, such that, plowing at 10-12% moisture content produced the largest clods, whereas the effect of plowing depth on MWD was not significant. The decreasing trend of MWD with soil moisture content persisted to the highest moisture level studied (16 - 18%), in which the average clod MWD (33.8 mm) was about 72% smaller than those formed at 10-12% moisture content. The effects of plowing depth and soil m. c. on soil inversion by disk plow were not significant and the overall soil inversion was about 54% which was in agreement with those reported by other researchers.
F Valimohamadi, M Tajbakhsh, A Saeed,
Volume 12, Issue 46 (fall 2009)
Abstract

In order to evaluate effect of planting date and plant density on grain yield, yield components and some quality and morphological traits of chickpea (Cicer arietinum L.), an experiment was conducted at the research center of agricultural and natural resources of west Azerbaijan in Urmia rain-fed research farm during 2005-2006 growing season in a split plot arrangement, based on a completely randomized block design with four replications. The cultivar of chickpea (Qazvin local mass) was planted in three sowing dates (mid November, mid March and mid April) in main plots, and four plant densities (intra row space: 7.5, 10, 15 and 20 cm) representing (45, 34, 23 and 17 plant/m2) in sub plots. Yield, number of pod per plant, seed protein content, plant height, number of secondary branches and 100 seed weight were evaluated. Results indicated that date of sowing had a significant effect on the yield, number of pod per plant and seed protein content but was not significant for plant height, secondary branches and 100 seed weight. Highest number of pod per plant was obtained in mid November sowing (37.69) and high protein content (22.63) in mid March. Different plant density effects were also not significant on yield, plant height, secondary branches and 100 seed weight but the effect of density on the number of pod per plant and seed protein content was significant. Highest number of pod per plant was obtained in the third density (31.5), and highest protein content in the first density (22.31). The results of study indicated that between mid March planting in the density (45 plant/m2) had highest yield (1042.08kg/ha) and protein content compared with the other planting dates.
Z Davarpanah, M Shey Zeinodin, Sh Dokhani, Gh Saeedi,
Volume 13, Issue 47 (4-2009)
Abstract

Sweet tasting glycyrrhizic acid is considered to be the most important chemical compound in licorice root. However, environmental factors affect chemical composition of licorice root including glycyrrhizic acid content. In this study, the effects of the harvesting time and location on licorice root composition were studied. Chemical composition of the licorice roots (Glycyrrhizia glabra) collected in summer and fall seasons from three locations in Fars province (Eghlid, Beiza and Doshman-Ziary) and one location from each of Kerman (Baft) and Kermanshah (Islam-Abad) provinces was determined. Glycyrrizhic acid, ash and sugar content before and after hydrolysis were measured in all samples after extraction. A combined analysis of variances was performed on data based on a randomized complete block design in six replications. The results showed that effects of harvesting season on sugar content, and the effects of location and its interaction with harvesting season on ash, sugar and glycyrrhizic acid content were significant (p<0.01). It was also found that the lowest ash content were obtained from roots harvested from Islam-Abad in summer the highest sugar content before hydrolysis belonged to roots harvested from both Baft and Islam-Abad in fall. Highest amount of sugar after hydrolysis was reported in the roots collected from Islam-Abad in Fall. Roots harvested from Beiza in Fars province in fall had the maximum glycyrrizhic acid content.
A Akhavan, M Bahar, Gh Saeedi, M Lak,
Volume 13, Issue 47 (4-2009)
Abstract

To understand the role of relative humidity rate, host genotype, inoculation method and growth stage in epidemiology of bean common blight, two greenhouse experiments were carried out monitoring epiphytic population size of Xanthomonas axonopodis pv. phaseoli (Xap) and disease severity. The result showed significant differences among genotypes, inoculation methods and growth stages for epiphytic population size and sam effects except genotypes for disease severity. The epiphytic population size was significantly higher on spray inoculated Khomein cultivar of bean during flowering (R6). However, the relative humidity rates did not significantly affect population dynamics of epiphytic Xap and the disease severity. Two field experiments were also carried out to determine the effects of irrigation systems (furrow irrigation and overhead sprinkler irrigation), inoculation method, growth stage and their interactions on epiphytic population size of Xap and disease severity. The result showed that the epiphytic population size and disease severity were higher on spray inoculated plants irrigated with overhead sprinkler system during pods filling (R8). In this study, a significant positive correlation was found between epiphytic population size of Xap and bean common bacterial blight severity.
M Talebi, M Bahar, Gh Saeedi, A Mohamadi,
Volume 13, Issue 47 (4-2009)
Abstract

To characterize the geographical distribution of medicago-nodulating rhizobia in western regions of Iran, 950 Sinorhizobium isolates were trapped from a combination of two local alfalfa populations (Hamedani, Nikshahri) together with a foreign cultivar ( Kodi) and soil samples from eight sites across Kurdestan, Kermanshah, Eastern Azarbayjan and Lorestan provinces. Also, a total of 45 isolates were obtained from nodules of naturally grown Melilotus officinalis (14 isolates) and Trigonella foenum-graecum (31 isolates) plants in Isfahan. On the basis of PCR partial amplification of the plasmid born nod box gene and chromosomal mucR gene of the isolates,16S ribosomal DNA PCR-restriction fragment length polymorphism analysis, and the nucleotide sequence, three isolates from alfalfa, seven isolates from M. officinalis and 13 isolates from T. foenum-graecum were proved to be Sinorhizobium medicae. The remaining isolates (943 from alfalfa, seven from M. officinalis and 18 from T. foenum-graecum) were identified as S. melilloti. Both species, S. meliloti and S. medicae, were recovered from nodules of all the hosts although S. meloti was clearly more dominant in nodulating different populations of alfalfa. Taken together, these results indicated that the abundance of S. meliloti is independent of the site of isolation and have a wide geographical distribution. In this study, the banding pattern resulting from PCR amplification of 16S rRNA gene, followed by digestion with Rsa I, clearly differentiated S. meliloti and S. medica strains, showing that PCR-RFLP is an appropriate method to discriminate medicago-nodulating rhizobian with relative rapidity.
Bita Moravejalahkami, Behrouz Mostafazadeh-Fard, Manouchehr Heidarpour, Saeed Eslamian, Jaber Roohi,
Volume 17, Issue 64 (summer 2013)
Abstract

Most furrow irrigation systems have low performance due to deep percolation at the upstream end and tailwater runoff at the downstream end of the field. To eliminate this problem improving furrow irrigation performance is necessary. Since the inflow discharge has high effect on infiltration along the furrow which consequently affects the application efficiency and water distribution uniformity, it would be important to apply different furrow inflow hydrograph shapes based on the field data such as field slope, soil texture and furrow length to save water. To produce different furrow inflow hydrograph shapes, an automatic valve which was connected to a stepper motor was designed to change the inflow discharge with time according to the desired inflow hydrograph shape. The experimental field was located at Isfahan University of Technology. A constant head water delivery system to the furrows including the automatic valve was installed in the experimental field and the tests were conducted for different inflow hydrograph shapes. The comparison of the measured furrow inflow discharges with the simulated furrow inflow discharges produced by the automatic valve showed that the automatic valve can produce different furrow inflow hydrograph shapes with high accuracy.
F. Alizadeh, A. H. Nasrolahi, M. Saeedinia, M. Sharifipour,
Volume 25, Issue 1 (Spring 2021)
Abstract

In areas with high rainfall distribution, proper irrigation management, including complementary irrigation, is one of the effective strategies to increase crop production. In order to investigate the effect of supplementary irrigation in different growth stages on the yield and water productivity of Autumn rapeseed, an experiment in the form of a complete randomized block design with five irrigation management treatments including rainfed (I1), single irrigation at flowering stage (I2), single Irrigation at pod filling stage (I3), two irrigation at pod filling stage and flowering (I4), three irrigation at flowering,  and pod filling and grain Filling stages (I5) was carried out at Lorestan University Research Field. Results showed that there was a significant difference between the effects of different irrigation treatments at 1% level. The lowest grain yield, biological yield and oil yield were obtained in I1 treatment with 44.62%, 50.95% and 53.58% decrease, as compared to I5 treatment. The results also showed that by applying irrigation at pod filling stage, grain yield and oil yield were increased by 13.22% and 20.23%, as compared to I1 treatment. The highest total productivity for the grain yield and oil yield was obtained in I5 treatment with 0.252 and 0.073 kg / m3. In general, due to the fact that drought stress in rapeseed calving stages reduces yield, the higher the number of irrigations in rapeseed calving stages, the more the yield.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb