Search published articles


Showing 6 results for Salamati

N. Salamati, M. Delbari, F. Abbasi, A. Sheini Dashtgol,
Volume 19, Issue 74 (Winter 2016)
Abstract

Simulation of water and solute transport in soil is very useful for optimum management of water and fertilizer use. In this study, the HYDRUS-1D model was used to simulate water and nitrate transport in furrow irrigation of sugarcane. For this putpose, a large-scale experiment was performed as a split plot design based on the randomized complete blocks with 3 replications in a 25-hectare piece of land in the Dehkhoda Sugarcane Agro-Industry Company from March 2012 to October 2013. The main factor was split application of fertilizer at three levels: two, three and four splits. The sub-main factor was fertilizer amount, applied at three levels (i.e. 350, 280 and 210 kg urea corresponding to 100%, 80% and 60% fertilizer requirements, respectively). Soil hydraulic parameters were estimated through inverse modeling using moisture data collected during more than 4 months of the sugarcane growing season. Solute transport parameters were then estimated using the hydraulic parameters and nitrate concentration data. In this study, statistical criteria including R2, RMSE, ME and SSQ were used to compare the observed and simulated values of moisture content and nitrate concentration. The results indicated that R2 for simulated moisture content and nitrate concentration in four splits and 60% fertilizer requirement treatment (i.e. calibrated treatment) were 62.7 and 91.2 percent, respectively. Cumulative infiltration depths were about 46 and 58 mm for calibration and validation treatments, respectively. For these treatments, the cumulative evapotranspiration rates were 50 and 60 mm, respectively. Soil moisture content in the surface layer varied from 21 to 45 and 21 to 42 percent, for calibration and validation treatments, respectively while the changes in the deep layer moisture content were 33 to 38 percent, for both treatments.


N. Salamati, H. Dehghanisanij, L. Behbahani,
Volume 23, Issue 1 (Spring 2019)
Abstract

In order to investigate the effect of water quantity in subsurface drip irrigation on water use efficiency of palm yield and yield components, and determining suitable irrigation treatments for three different date cultivars, a split plot experiment design in a randomized complete block design with three replications were applied for three cropping years (2013-2016), at Behbahan Agricultural Research Station. The applied irrigation water in three levels based on 75, 100 and 125 percent of water requirement in the main plots and three cultivars of Kabkab, Khasi and Zahidi dates were compared in sub plots. The irrigation level of 75% with 0.646 kg of dates per 1 cubic meter of water in terms of water use efficiency as compared to the other two levels of irrigation showed a significant superiority. The Khasi cultivar with 83.9 pips and 29.2929 fruits in the cluster ranked first. The irrigation level of 125% with 11.1% were higher in fruit moisture, and 100% and 75% irrigation levels with 9.6% and 7.8% moisture content were the next. The irrigation level of 125% for Kabkab cultivar with a volume of 11.1 cubic centimeters were ranked first. Optimizing water use and reducing it to 10606 cubic meters per hectare in irrigation level of 75% water treatment will save water consumption. If the basis for comparing the amount of water used in 100% water treatment is considered, then the use of subtropical drip irrigation reduces water consumption by 2509.6 and 5019.2 cubic meters per hectare, respectively, compared to 100 and 125% water requirements.

N. Salamati, A. Danaie,
Volume 24, Issue 4 (Winter 2021)
Abstract

In order to study and evaluate the drought stress indices in surface irrigation by furrow method on grain yield, the yield components and water use efficiency, an experiment was conducted at Behbahan Agricultural Research Station in 2014-16. The experiment was conducted as a split plot in a randomized complete block design with 4 replications. Irrigation at two levels (irrigation after 100 and 200 mm evaporation from Class A pan, respectively) was evaluated as the main factor and corn cultivar was considered at 6 levels as the sub-factor. Comparison of the  mean water use efficiency in irrigation and cultivar interactions showed 100 mm evaporation from Class A pan and cultivars V4 (PH1), V5 (PH3) and V2 (SC Mobin) were ranked the first and foremost, respectively, with the  yields of 1.353, 1.299 and 1.296 kg of corn per kg of water consumed, respectively. The mean water consumed in 2014 of the experiment in 100 and 200 mm evaporation from Class A pan was 521.2 and 462.4 mm, respectively. Pearson correlation coefficient results  also showed that with increasing the  yield components, such as the  number of grains per row and number of rows, the  1000-grain weight was  increased due to  the highly significant correlation coefficient of 1000-grain weight with grain yield (r = 0.8776).  Consequently, grain yield was also increased. The highest values of SSI, STI, MP, TOL, GMP HM and YI indices were calculated in V4 (PH1). The higher values of the above indices in cultivar V4 (PH1) than other cultivars caused this treatment to be introduced as the superior one. The decreasing trend of corn yield, which was caused by water deficit stress, increased SSI, STI, MP, TOL, GMP and YI indices, while it decreased corn yield, leading to incremental changes in the YSI indices.

N. Salamati, A. Danaie, L. Behbahani,
Volume 25, Issue 2 (Summer 2021)
Abstract

To investigate and evaluate the effects of different levels of drip irrigation on grain yield and yield components, oil yield, seed oil percentage, and seed water use efficiency, an experiment was performed at Behbahan Agricultural Research Station during two crop years 2018-19 and 2019-20. The experiment was conducted in split plots based on a randomized complete block design with 3 replications. The amount of water in tape drip irrigation was compared at four levels of 40, 60, 80, and 100% water requirement in main plots and two sesame cultivars Local of Behbahan and Shevin in subplots from the beginning of flowering. Comparison of mean interaction effects of irrigation levels and cultivars showed that the treatment of 100% water requirement in the Behbahan local cultivar with the yield of 1218.0 kg/ha was ranked first and foremost. Water consumption in the highest treatment (100% water requirement and Behbahan local cultivar) was calculated to be 5389.4 m3/ha. Treatments of 100% and 80% of water requirement in superior cultivar (local Behbahan) with water use efficiency of 0.226 and 0.210 kg/m3 had no significant difference, respectively, and were in the first place. Pearson correlation coefficient calculated for the measured traits showed that the highest correlation of water volume was calculated (r = 0.9271) with the weight of one thousand seeds. Significant correlations of water volume with grain yield and yield components indicated that sesame was susceptible to drought stress and attention to optimal water management in sesame cultivation. Therefore, decreasing the volume of water consumed and consequently drought stress in sesame reduced yield and yield components.

N. Salamati, H. Dehghanisanij, L. Behbahani,
Volume 26, Issue 2 (ُSummer 2022)
Abstract

Increasing crop production per unit volume of water consumption requires recognizing the most dependent variable in drip irrigation to the volume of water consumption and also identifying the most important variables independent of water productivity in surface and subsurface drip irrigation for optimal use of available water resources. The present research was carried out in Behbahan Agricultural Research Station during four cropping seasons (2013-2017) on a Kabkab date variety. Experimental treatments include the amount of water in the subsurface drip irrigation method based on two levels of 75% and 100% water requirement and in surface drip irrigation based on 100% water demand. Data were analyzed using a randomized complete block design with three replications. The results of the analysis of variance of the mean of different irrigation treatments in quantitative traits showed that the effect of irrigation was significant at the level of 1% in terms of cluster weight index, fruit weight, and fruit flesh to kernel weight ratio. The results of regression analysis of variance showed that in the dependent variable of cluster weight, the consumption water volume explained 19.1% (R2 = 0.191) of the fluctuations of the dependent variable (cluster weight). Among all the studied variables, the volume of water consumption explained the most significant changes in date cluster drying. Fruit moisture with t (2.096) and equivalent beta coefficient (0.046) had a significant positive effect on water productivity at the level of 5%. The results of the Pearson correlation coefficient showed that the effect of yield on changes in water productivity was much greater than the volume of water consumed so the yield caused significant changes in water productivity. While the effect of water consumption on water productivity was not significant.

N. Salamati, M. Moayeri, F. Abbasi,
Volume 27, Issue 2 (Summer 2023)
Abstract

The objective of the present study was to conduct field studies for direct measurement of canola under farmers' management in one crop season (2019-2020) in 27 farms in Behbahan, Khuzestan province. Water requirement was calculated based on the FAO Penman-Monteith model using the daily statistics of the Behbahan synoptic meteorological station. A T-test was used to statistically compare the results such as the depth of irrigation and applied water productivity in the field in different irrigation systems. Linear multivariate regression analysis was used to investigate the effects of the independent variable on the dependent parameter of water productivity. The volume of applied water in the fields ranged from 4085.5 to 7865.3 m3/ha. The results of comparing the average yield of two irrigation systems in the t-test showed that the two sprinkler and surface irrigation systems with yields of 2614 and 2330 kg/ha, respectively, were not significantly different. Applied water productivity in traditional and modern irrigation systems was calculated to be 0.386 and 0.486 kg/m3, respectively, which had significant differences. The results of the analysis of variance in the regression model showed that among the independent variables, yield with t-statistic (23.997) and equivalent beta coefficient (0.880) had the most significant positive effect at a 1% level on applied water productivity. After that, the volume of applied water (irrigation water + effective rainfall) with a t-statistic of (-11.702) and a beta coefficient of equivalent (-0.793) had the most negative and significant effect at the level of 1% on the applied water productivity. The results of the Pearson correlation coefficient showed that irrigation events had a positive and significant correlation at a 5% level with applied water and yield. These correlations were 0.455 and 0.380, respectively. By increasing irrigation events, the volume of applied water has practically decreased and has become as close as the plant needs, and has increased water productivity.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb