Search published articles


Showing 3 results for Sarvi

V. Sarvi Moghanloo , M. Chorom, H. Motamedi , B. Alizadeh, Sh. Ostan,
Volume 15, Issue 56 (sumer 2011)
Abstract

Soil enzymes are the catalysts for important metabolic process functions including the decomposition of organic inputs and the detoxification of xenobiotics. The aim of this research was to determine the pattern of variation in the activities of dehydrogenase, urease, lipase and phosphatase enzymes, determining the number of hetrotrophic and degrading bacteria and measuring the soil respiration and yield plants during the bioremediation of oil contaminated soils. To this aim, the soil deliberately contaminated with crude oil at a 1 and 2 wt% rate and in four treatments including: plant multiflorum (T1), plant multiflorum with mycorrhiza inoculation (T2), plant multiflorum with oil degrading bacteria inoculation (T3), plant multiflorum with mycorrhiza and oil degrading bacteria inoculation (T4) was employed for bioremediation of oil contaminated soil. The above parameters were determined in five stages during bioremediation and ultimately for the yield of plants at the end of this period .The results showed that the activity of urease and hydrogenase anzymes were increased or decreased parallel to contaminant increase and decrease. In contrast, the activity of lipase anzyme was decreased with contaminant increase and increased with contaminant decrease. Therfore, it can be a good choice for monitoring of bioremediation of contaminated soils. The results showed that the number of degrading and hetrotrophic microorganisms were increased by increasing the amount of contamination and the number of degrading and heterotrophic bacteria were decreased parallel to contaminant decreasing especially in those samples treated with mycorrhiza inoculation. The plant yield and amount of degradation of oil compounds were highest in mycorrhiza plus degrading bacteria treatment.
V. Sarvi, H. R. Matinfar,
Volume 23, Issue 1 (Spring 2019)
Abstract

In the face of rapid growth of the population and the need for food production sectors, one of the ways to achieve this is to increase the production per unit area. In modern agriculture, the preparation of soil fertility map seems to be necessary to plan for appropriate use of fertilizers for crops. This study was conducted to prepare a distinct map for evaluating the soil fertility according to soil chemical properties in 191 soil samples of Ardabil Plain in Ardabil Province. To achieve this goal, the available N and P, K, EC, Fe, Zn, Mn and the organic matter of soil were mapped using geostatistical Kriging estimator into the Geographic Information System (GIS) by the ArcGIS software. The Analytical Hierarchy Process (AHP) was used for weighting the soil fertility factors as the input data. Then, a membership functions was defined for each factor by factorial scoring and the map of soil fertility was prepared and classified by using the AHP technique into the GIS program. The results showed that most of nitrogen and phosphorus with the weight of 0.293, 0.202 had the mostly infraction on the soil fertility and production. Survey map of the distribution showed that most of the factors were studied in the northern region with the low nutrients. The results also showed that 23.7 percent of cultivated land fertility maps had a poor fertility status, 28.3 percent of the land had a moderate fertility status, 25.4 percent of the land was good and the fertile land with 22.6 percent had a very good fertility status.

B. Noori, H. Noori, Gh. Zehtabian, A. H. Ehsani, H. Khosarvi, H. Azarnivand,
Volume 23, Issue 4 (winter 2020)
Abstract

Due to the impact of climate change on the plant water demand and the availability of water, especially in drylands, it is vital to estimate the evapotranspiration rates accurately. In this study, the vegetation status in the marginal desert areas of Varamin Plain was studied, and the actual evapotranspiration and water demand of intercropped farms were assessed. This study also evaluated the potential relationship between the evapotranspiration of different agricultural lands and their vegetation index using remote sensing techniques. A collection of satellite images from Landsat 7 in consecutive seasons was used to determine the greenness rate of marginal desert areas during 2013 and 2014. ENVI software was used for the image processing, which included geometric corrections and atmospheric corrections, to develop NDVI maps. Also, weather data and crop properties of Varamin Plain were collected, and the actual evapotranspiration rate of plant cover was estimated using CropWat. The correlation between NDVI extracted from satellite images and the evaluated evapotranspiration rate was assessed. The results showed a strong relationship between evapotranspiration of heterogeneous agricultural lands and NDVI. This confirmed that the NDVI derived by remote sensing approach could be a useful index to evaluate vegetation status and water demand of farmlands in the desert borders.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb