Search published articles


Showing 2 results for Sharifi-Tehrani

A. H. Jamali-Zavareh A. Sharifi-Tehrani, M. Izadyar, E. Taheri,
Volume 8, Issue 1 (spring 2004)
Abstract

Systemic properties of pyroquilon, an anti-blast systemic chemical, used in controlling rice blast disease caused by Pyricularica grisea, was investigated through in vivo tests. Rice plants were treated with pyroquilon as granules in soil. Leaf and stem tissues were collected at different times after treatment and pyroquilon was extracted from tissues and detected by gas chromatography. Treated rice plants were also exposed to disease infection in blast nursery at different times and disease incidence was evaluated one week later. Pyroquilon was detected in leaf tissue one day after treatment (DAT), reached maximum during 4-7 DAT, and then reduced gradually to a nondetectable level after 28 DAT. In stem tissue, change in pyroquilon content was similar to but its quantity was less than that of leaf tissue. On inoculated plants, disease was controlled up to 60% at 2 DAT and completely controlled during 4-28 DAT. The results indicated that pyroquilon could be taken up and systemically translocated in rice plants after applying as granules in soil. Extent of disease control was a good function of pyroquilon content in leaf tissue (R2=0.93) and 2 ppm of compound in leaf could provide 90% control of the disease. In contrast, disease control was not a good function of pyroquilon content in stem tissue (R2=0.30).
N. Sahebani , J. Zad , A. Sharifi-Tehrani , A. Kheiri ,
Volume 12, Issue 43 (spring 2008)
Abstract

Polyphenol oxidase (PPO) activities were measured spectrophotometrically in tomato(Roma VF: resistant to Fusarium oxysporum f.sp. lycopersici and susceptible to Meloidogyne javanica) roots inoculated with nematode and fungi in four biological life stages of nematode. PPO specific activity showed a significant decrease in treatments (nematode + fungi) as compared with control plants. Results showed that nematode is able to change or suppress induction of this enzyme in spite of fungal induction. Nematode in all biological stages suppressed the induction of PPO activity in tomato roots but in young adult formation stage the suppression was higher than other life stages including giant cell formation, egg-laying and penetration. Native polyacrylamide gel revealed the presence of five isozymes of PPO with Rm values of 0.26, 0.31, 0.44, 0.50 and 0.63. Isoforms with Rm values of 0.26, 0.44, 0.50 and 0.53 showed significant changes in nematode + fungus inoculated tomato plants compared to plants inoculated with fungus alone. Based on the results obtained in this study, nematode infection resulted in suppression of tomato defenses against the fungi (as secondary pathogen) and intensified the fungal disease. Five PPO isoforms with Rm values of 0.26, 0.31, 0.44, 0.50 and 0.63 were shown in native polyacrylamide gel among which the isoform with Rm value of 0.31 had a thicker band in tomato plants inoculated with nematode or fungus alone. Two isoforms with Rm values of 0.44 and 0.53 in nematode-inoculated plants were similar to the corresponding bands in the healthy control. Isoforms with Rm values of 0.26, 0.44, 0.50 and 0.53 in nematode-fungus-inoculated tomato plants showed significant changes compared to plants inoculated with the fungus alone. Nematode infection of root tissue caused suppression of PPO specific activity and induced changes in PPO isoforms with Rm values of 0.26, 0.44, 0.50 and 0.63 more significantly than isoform 0.31.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb