Search published articles


Showing 2 results for Shirmohammadi

M. Shirmohammadi, A. R. Hossein Pour, Sh. Kiani,
Volume 22, Issue 3 (Fall 2018)
Abstract

Understanding the distribution of different P forms in soil aggregate fractions is important in evaluating the risk of P run-off and leaching in the agricultural soils. The objective of the present research was to determine the effect of aggregate size on soil phosphorus availability and fractionation in 10 calcareous soils. Micro aggregate (< 0.25 mm), macro aggregate (> 0.25 mm) and whole soil were separated by dry sieving. Olsen P, total P, organic P, and inorganic P fractions in micro aggregate, macro aggregate, and whole soil were determined. Soil inorganic P fraction was  determined by a sequential extraction procedure including: dicalcium phosphate (Ca2-P), octa calcium phosphate (Ca8-P), apatite (Ca10-P), P absorbed by Al oxide (Al-P), P absorbed by Fe oxide (Fe-P) and P incorporated in to Fe oxide (O-P). The results showed that the amounts of (Olsen P), (Ca2-P), (Ca8-P), (Ca10-P), (Organic P), (Al-P), (Fe-P), (O-P) and (Total P) in 70, 60, 40, 40, 60, 70, 60, 50 and 70 percent of soils, respectively, in the micro aggregates were significantly higher than those of the macro ones. Finally, by increasing the P content, particularly the smaller sized aggregates, it was likely that the eroded material would favor greater P loss.

H. Motaghian, M. Shirmohammadi, A. Hosseinpur,
Volume 25, Issue 2 (Summer 2021)
Abstract

Iron (Fe) is an essential micronutrient for plants and its deficiency occurs in calcareous soils. However, a suitable extractant for the estimation of plant-available Fe and its critical level in calcareous soils depends on the type of soil and plant. The objective of the present study was to evaluate several chemical extractants to estimate available Fe and its critical level for corn growing in calcareous soils from Chaharmahal-Va-Bakhtiari Province. The amount of available Fe was measured by DTPA-TEA, AB-DTPA, 0.01 M calcium chloride, Mehlich IІ, and Mehlich ІІI extractants. At the end of the experiment, corn was harvested, and dry weight, Fe concentration in the plant, and the amount of Fe uptake by corn were determined. Extracted Fe had a significant correlation with all extractants used with maize indices. . The highest correlation coefficients were determined between the DTPA-TEA (0.32-0.94) and AB-DTPA (0.43–0.96) methods and the plant indices. The results of this research showed that the DTPA-TEA and AB-DTPA methods were the most suitable extractants for predicting available Fe content in these soils and the critical level of Fe extracted by these extractants was 2.81 and 3.67 mg kg-1.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb