Search published articles


Showing 3 results for Sobhan Ardakani

M. Mohammadi, B. Lorestani, Soheil Sobhan Ardakani, M. Cheraghi, M. Kiani Sadr,
Volume 25, Issue 4 (Winiter 2022)
Abstract

Polychlorinated biphenyls (PCBs) can adversely affect human and environmental health according to long-term half-life and persistence in the environment. Therefore, this study was conducted to detect, identify, and health risk assessment of PCBs in surface soils collected from the vicinity of Arad-Kouh processing and disposal complex, Tehran, in 2020. A total of 30 surface soil samples was collected from 10 sampling sites near the Arad-kouh complex. After extraction of analytes, the gas chromatography/mass spectrometry (GC–MS) method was used to determine PCBs in soil samples. Based on the results, 15 congeners of PCBs were detected in the analyzed soil samples. Also, the minimum, maximum, and mean concentrations of total PCBs (µg/kg) were 269, 434, and 359, respectively. Moreover, the results of PCA and significant contribution values of low molecular weight homologs indicated that the presence of PCB compounds in the soil samples was connected with combustion processes in the soil. Besides, as among the detected PCBs, the TEF values only established for PCB105 showed that exposure to contaminated soil could be lead to a moderate level of carcinogenic risk through PCB105. Given that PCBs have adverse effects on the environment and human health, detecting, determining the concentration, source identification, and periodical monitoring of these compounds in different mediums to human health maintenance is strongly recommended.

A. Ghobadi, M. Cheraghi, S. Sobhan Ardakani, B. Lorestani, H. Merrikhpour,
Volume 26, Issue 1 (Spring 2022)
Abstract

The qualitative assessment of groundwater resources as the most important sources of drinking and agricultural water is very important. Therefore, the present study was conducted to evaluate the quality of heavy metals in groundwater resources of the Hamadan-Bahar plain in 2018 using water quality indices. In so doing, a total of 120 groundwater samples were collected from 20 stations during the spring and summer seasons and the values of physico-chemical parameters were determined based on the standard methods and also the content of heavy metals was determined using inductively coupled plasma spectroscopy (ICP). The results showed that the mean concentrations of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn (µg /L) in the samples in the spring season were 5.08, 0.260, 1.05, 2.70, 1.50, 0.490, 1.50, 7.48, and 1.75, respectively, and in the summer season were 20.7, 0.220, 0.950, 7.12, 1.34, 0.490, 1.29, 8.23, and 2.08, respectively and except for As in the summer season, the mean content of other elements was lower than maximum permissible limits established by WHO for drinking water. Meanwhile, the mean values of Cd, HPI, HEI, MI, and PoS indices in the spring season with -7.51, 9.91, 1.42, 1.42, and 328, respectively, indicate the water quality was categorized as low, low, low, low and moderately affected and in the summer season with -5.90, 10.0, 3.04, 3.04, and 673, respectively, were categorized as low, low, low, moderately affected, and high pollution. Due to the extensive use of agricultural inputs, especially chemical and organic fertilizers and chemical pesticides containing heavy metals by farmers in the study area, the possibility of increasing the concentration of heavy metals in the soil and their penetration into groundwater aquifers will not be unexpected in the medium term. Therefore, periodic monitoring in groundwater resources of the study area is recommended.

N. Dalvand, S. Sobhan Ardakani, M. Kiani Sadr, M. Cheraghi, B. Lorestani,
Volume 26, Issue 3 (Fall 2022)
Abstract

Individuals spend a lot of time indoors, thus they can generally be exposed to polycyclic aromatic hydrocarbons (PAHs) as a teratogen, mutagen, and carcinogen pollutants with the potential for environmental and also human health risks. Therefore, the current study was performed to analyze PAHs in household dust samples of the city of Khorramabad, Iran in 2019. A total of 50 indoor dust samples were collected from 10 sampling sites. After the extraction of analytes, the gas chromatography/mass spectrometry (GC–MS) method was used to determine PAHs in the studied samples. All statistical analyses were performed by SPSS software. The results showed that 16 priority PAHs were detected in the samples with the minimum, maximum, and mean values of 14.0, 23.3, and 19.2 µg/kg. Also, based on the results the mean contents of detected PAHs were lower than the maximum permissible concentration (MPC) established by MHWS and Iran DOE. In conclusion, due to exposure risks of PAHs, regular and periodic analysis of these pollutants in different environmental samples including soil, sediment, dust, particulate matter, air, water, and tissues of living organisms for environmental and human health maintenance is recommended.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb