Showing 4 results for Sobhani
M. Behgar, M. Danesh Mesgaran, H. Nasiri Moghadam, S. Sobhani Rad,
Volume 11, Issue 40 (summer 2007)
Abstract
This study was conducted to investigate the effect of formic and sulphuric acids on chemical composition, dry matter (DM) and crude protein (CP) degradability of alfalfa silage and its effect on early lactating Holstein cow as three trials. In the first trial, chopped alfalfa (22 and 33% DM) was ensiled with three levels of formic acid (0.0, 15 and 20 ml/kg DM) and two levels of sulphuric acid (0 and 4 ml/kg DM). In the second trial, DM and CP degradability coefficients of silages (Treatment 1: without acid Treatment 2: 15 ml formic acid + 4 ml sulphuric acid per kg DM) and alfalfa hay (Treatment 3) were determined using nylon bag technique in two cannulated steers. In the third trial, silages (treatments 1 and 2) were replaced with 50% of alfalfa hay in the early lactation Holstein cow diet (11 cows, 19 ± 8 days in milk). Diets were fed for 49 days. Dry matter intake, milk production and milk composition were evaluated. Blood metabolites were determined in weeks 4 and 6. Effect of wilting on pH was significant (p<0.05). Quickly degradable fraction (a) of DM was similar in both silages (0.35) but was higher (0.5) for hay rather than the silages. Slowly degradable fraction (b) of DM of the acid - treated silage was higher compared with the hay (0.39 and 0.32, respectively). Fraction (a) of CP in acid treated silage was less than the control silage and hay (0.46, 0.57 and 0.57, respectively). Fraction (b) of CP in
acid - treated silage was less compared with the control silage and hay (0.41, 0.28 and 0.35, respectively). There were no significant differences between the treatments on the cow’s performance. However, time effect on milk fat and solid non-fat was significant (p<0.01). Blood glucose concentration before feeding with treatment 2 was significantly higher (p<0.01) than cows feeding with treatment 1.
A. Masjedi, M. Sobhani,
Volume 19, Issue 74 (Winter 2016)
Abstract
Riprap is used to control scouring around the bridge abutment. In order to study the stability of riprap around two bridge abutments with two different shapes, experiments were conducted in a laboratory flume made of Plexiglass in 180 degree bend. In this research, several experiments were done by placing the two bridge abutments made of Plexiglas in a series of riprap. Experiments included two different types of riprap with different densities, four different diameters and constant rate of discharge under pure water condition. In each experiment, flow depth was measured in terms of moving threshold, then stability was calculated by using the data obtained. The results showed that in the same conditions chamfered wing-wall is greater than vertical-wall. So, chamfered wing-wall is, on average, 9 percent more stable than the vertical wall.
A.r. Emadi, S. Fazeli, M. Hooshmand, S. Zamanzad-Ghavidel, R. Sobhani,
Volume 27, Issue 1 (Spring 2023)
Abstract
The agricultural sector as one of the most important sectors of water consumption has great importance for the sustainability of the country's water resources systems. The objective of this study was to estimate the river water abstraction (RWA) for agricultural consumption in the study area of Nobaran in the Namak Lake basin. The RWA was estimated using variables related to morphological, hydrological, and land use factors, as well as a combination of their variables collected through field sampling. Data mining methods such as adaptive-network-based fuzzy inference systems (ANFIS), group method of data handling (GMDH), radial basis function (RBF), and regression trees (Rtree) were also used to estimate the RWA variables. In the current study, the GMDH24 model with a combined scenario including the variables of river width, river depth, minimum flow, maximum flow, average flow, crop, and the garden cultivated area was adopted as the best model to estimate the RWA variable. The RMSE value for the combined scenario of the GMDH24 model was found to be 0.046 for estimating RWA in the Nobaran study area. The results showed that the performance of the GMDH24 model for estimating RWA for maximum values is very acceptable and promising. Therefore, modeling and identifying various variables that affect the optimal RWA rate for agricultural purposes fulfills the objectives of integrated water resources management (IWRM).
A.r. Emadi, R. Fazloula, S. Zamanzad-Ghavidel, R. Sobhani4, S. Nosrat-Akhtar,
Volume 27, Issue 3 (Fall 2023)
Abstract
As one of the most necessary human needs, groundwater resources play a key role in the economic and political processes of societies. Climatic and land-use changes made serious challenges to the quantity and quality of groundwater resources in the Tehran-Karaj study area. The main objective of the present study is to develop a method based on individual intelligent models, including adaptive neural-fuzzy inference system (ANFIS), gene expression programming (GEP), and combined-wavelet (WANFIS, WGEP) methods for temporal and spatial estimation of total hardness (TH), total dissolved solids (TDS), and electrical conductivity (EC) variables in the groundwater resources of the Tehran-Karaj area for statistical period of 17 years (2004-2021). The results showed that
combined-wavelet models have higher performance than individual models in estimating three selected variables. So that the performance improvement percentage of the WANFIS model compared to ANFIS and WGEP model compared to GEP, taking into account the evaluation index of root mean square error (RMSE) were obtained (23.713%, 18.018%), (12.581%, 33.116%), and (6.433%, 12.995%) for TH, TDS, and EC variables, respectively. The results indicated a very high spatial and temporal compatibility of the estimated values of the WGEP model with the observed values for all three qualitative variables in the Tehran-Karaj area. The results showed that the concentration of qualitative variables of groundwater resources from the north to the south of the study area has an upward trend for all three qualitative variables. In urban areas, pollution caused by sewage and population increase, as well as in agricultural areas, the use of chemical fertilizers and their continued infiltration into groundwater resources and
over-extraction of groundwater resources aggravate their pollution. Therefore, in the study area, climatic changes and the type of land use are strongly related to the quality of groundwater resources.