Showing 4 results for Sohrabi
Teymour Sohrabi, Reza Asilmanesh,
Volume 2, Issue 2 (summer 1998)
Abstract
Irrigation systems may or may not be well designed and properly used. Therefore, it is necessary to study these systems to provide direction to management in deciding whether to continue existing practices or to improve upon them. The major objective of this study is to determine the evaluation factors of center-pivot irrigation system and factors which usually affect irrigation performance. A solution. for the improvement of irrigation water use will be presented and design and management problems, will also be mentioned. To achieve the objectives of this study, the characteristics of the soil and the growing plant (seed corn) along with design parameters were determined. The system was designed on the basis of soil and the growing plant characteristics in the 500-ha farm of Ministry of Agriculture (located in the North East of Meshkinabad, Karaj) having a silty loam texture. Then, it was examined with respect to the existing conditions. Four radial rows of catch containers spacing 6 meters were set up and then field data for performance evaluation of system were determined. The evaluation factors were calculated on the basis of field data analysis. The results obtained are as follows: During the growing season, the average PELQ, AELQ and DU for the center-pivot system were about 79, 75.8 and 84 percent, respectively. Analysis of evaluation factors indicated that the system is not efficient DU and PELQ values were not high enough for the system because it was not properly designed for the existing conditions. Al the same time, it seems that the difference between PELQ and AELQ values are meaningful which may indicate management difficulties.
T. Sohrabi, U.a. Khoshkhahesh,
Volume 3, Issue 4 (winter 2000)
Abstract
The purpose of this research is to determine the application efficiency of rice irrigation plots and to analyze the reasons for low efficiency. The study will also try to determine the effective factors which could increase the application efficiency of rice fields. The selection of rice fields was based on climate, soil characteristics, and farmer management. Water application efficiency was determined by field measurements in three modern irrigation networks named Fouman (F), Rasht (G) and Lahidjan (D). In the meantime, a traditional network was included for comparison. In the study areas, the soil texture was heavy with an infiltration rate of less than 3 mm/day. The study was carried out under two different conditions: (1) without return flow and (2) with return flow. In the first case, the average application efficiencies in Fouman (F), Rasht (G) and Lahidjan (D) were about 51.2, 49.0 and 49.4 percent, respectively and the maximum and minimum values were about ((52.6, 49.7)), ((50.7 , 47.3)), and ((50.7 , 48.0)) percent, respectively. In the second case, the average application efficiencies for the above-mentioned regions increased to 73.4, 73.3 and 72.4 percent, respectively and the maximum and minimum values were about ((74.3, 72.4)), ((74.3, 72.1)), and ((73.0, 71.5)) percent, respectively. Runoff ratios in the above-mentioned regions were 30, 33 and 31 percent, respectively. During growing period (from transplanting to harvesting), the average applied irrigation water was about 1130 mm (11300 m3/ha) and the average evapotranspiration was determined to he about 561mm.
T. Sohrabi, A. Hosseini, K.h. Talebi,
Volume 5, Issue 1 (spring 2001)
Abstract
During recent years, worldwide concern has been focused on the potential for contamination of surface waters and ground waters by agrochemicals in runoff and soil water from irrigated fields. Given this perspective, it is very important to correctly evaluate the levels of different agrochemicals in water, both from human toxicological and environmental viewpoints and to develop management strategies for reducing agrochemical loads to acceptable levels in the environment. The main objective of this study was to assess the qualitative changes of tailwater due to the use of agrochemicals and thereby to determine contamination loads. Four farms (A, B, C and D) were chosen in the Foumanat region in the F2 unit in 1996. The areas of these fields ranged from 0.22 to 0.6 ha having a number of unequal successive basins with variable inflow and outflow rates.
A quantitative analysis showed that the tailwater ratio in farms A, B, C and D ranged from 2 to 64% during the irrigation season. The outflow water was classified as C3S1. The changes in qualitative factors were not significant and did not follow any certain pattern during the irrigation season. The changes in SAR, EC, Cu, Zn, B, P, K and DO in the inflow and outflow waters were also insignificant. After fertilizer application, the increase in nitrogen concentration in the outflow was significant. The average pollution loads in the inflow and outflow were about 1618 and 1476 kg/day/ha, respectively. The remaining load in the rice fields was about 142 kg/day/ha, which was meaningful at 1% level. The fifth farm (E) located in Lahidjan was sprayed with diazinon. Water samples were analyzed each day for diazinon residues for 10 days after application. Sample analysis showed that the concentration of the insecticide was 93.08 mg/l immediately after application and gradually reduced to 0.98 mg/l ten days after spraying.
M. Alizadeh, F. Mirzaii, T. Sohrabi , M. Kkavosi , M. R Yazdani,
Volume 17, Issue 66 (winter 2014)
Abstract
Water management in cracked paddy soils is an important issue in rice cultivation. In order to study organic matter and zeolite effect and their interaction on moisture conditions and hydraulic and physical properties of paddy soils, the organic matter (rice straw) at four levels (0, 8, 16 and 24 tons per hectare), zeolite at four levels (0, 0.5, 1 and 1.5 percent ), and also moisture stages of soil at 5 levels were selected. This experiment was conducted in Rice Research Institute of Iran. Randomized Complete Block Design (RCBD) was used to study the effect of treatments on different subjects. The amount of moisture, bulk density and the distance of soil from the wall of container were measured in a 4-month period. The obtained results showed that the interaction effects of organic matter and zeolite on soil moisture content were statistically significant at one percentage level. Addition of plant residues caused an increase in soil moisture weight and reduction in bulk density compared to the control treatment. It was also found that soil moisture content and bulk density were highly correlated. Bulk density of control treatment ranged from 0.75 to1.7 gr/cm3, while with addition of 1.5 % crop residue the bulk density ranged from 0.7 to 1.3gr/cm3. Overall results show that crop residues are effective in reduction of crack parameters of soil , but zeolite cannot be effective although it causes more maintenance of soil moisture.