Search published articles


Showing 5 results for Soroush

H. Rahim Soroush, A. Moumeni,
Volume 10, Issue 1 (spring 2006)
Abstract

To determine the genetic structure, general and specific combining ability of some important agronomic characters, eight rice cultivars including 5 lines and 3 testers were crossed in Rice Research Institute of Iran (RRII), at Rasht, in 2000. Parental lines and F1 were planted in a Randomized Complete Block Design with three replications in the year 2001. Eleven important agronomic traits including yield and its components were recorded. Analysis of variances based on line×tester method showed that the mean squares for all traits were significant at 1% level. General combining ability (GCA) was positive and significant for grain yield in Khazar and Salary. Kanto and Salari have showed a negative and significant GCA for fertile tillers, as one of the most important yield components. Lines 213, 229 and Domsiah had negative and significant GCA for days to 50% of flowering. The lines with positive GCA can inherit those characters to progenies positively. While the lines with negative GCA can negatively transfer those characters to progenies. Estimation of components of genetic variance indicated that the number of fill grain per panicle and days to 50% of flowering were controlled by additive gene effects. It indicated that these traits can be transferred into progenies. For traits such as grain yield, fertile tillers and length of flag dominant gene effects was predominant.
M. Fazlalipour, B. Rabiei, H. Samizadeh Lahiji, H. Rahim Soroush,
Volume 11, Issue 42 (winter 2008)
Abstract

  Application of selection index for screening desired plants based on complex quantitative traits can be more effective than direct selection. This study was conducted using an F2 rice population consisting of 87 plants derived from a cross between two cultivars Gharib and IR28. The purpose was to establish suitable selection indices for increasing yield and its related traits in research farm of Rice Research Institute of Iran (RRII), Rasht, in 2005. Studied traits included the days from sowing, germinated grain to maturity (MD), plant height (PH), panicle length (PL), flag leaf length (FL), flag leaf width (FW), number of panicles per plant (PP), number of grains per panicle (GP), number of spikelets per panicle (SP), 100-grain weight (GW), grain yield per plant (GY), biomass (BM), harvest index (HI), grain length (GL) and grain breadth (GB). Among the studied traits, 100-grain weight (GW), biomass (BM) and harvest index (HI) (0.99) and flag leaf width (FW) (0.35) showed the highest and lowest broad-sense heritability, respectively. Path coefficient analysis revealed that BM, HI, GP had positive direct effects on GY. Calculation of five different selection indices based on optimum and base indices indicated that selection for BM, HI and GP using genotypic path coefficients and their heritability as economic values would be a suitable selection criterion for improving population. Moreover, this study showed that both optimum and base indices show the same genetic progress for the studied traits. Since evaluation of base index, is much easier than the optimum index, it is highly recommended.


F. Soroush, B. Mostafazadeh-Fard, S. F. Mousavi, F. Abbasi,
Volume 23, Issue 1 (Spring 2019)
Abstract

Infiltration is the most important characteristic in the design and management of any surface irrigation system. Since the hydraulic of flow in meandering furrows is different from the standard furrows, the accuracy of infiltration function parameter estimation methods should be examined for the optimal design and management of meandering furrow irrigation. The main objective of this study was to compare Elliot and Walker’s two-point and two-time methods for estimating the empirical infiltration function parameters of meandering furrow irrigation using four sets of field data. The estimated infiltration functions, as obtained by the two methods, were validated by performing the unsteady flow simulations and using the Slow-change/slow-flow (SC/SF) model. The results showed that Elliot and Walker prediction of the advance trajectories (with a mean RMSE of 0.68 minutes) was comparable to the two-time method (with an average RMSE of 0.66 min). The Nash–Sutcliffe efficiency coefficient for the simulated outflow hydrograph by the two-time and two-point methods was 0.89 and 0.50, respectively, indicating the excellent predictive power of the two-times method. In addition, the two-time method predicted the total volume of infiltration with the less relative error (-1.5%), in comparison to the two-point method (-47.2%). Therefore, the use of post-advance data (such as a two-time method) for infiltration function parameters estimation improves the flow simulation in the meandering furrows.


F. Soroush, A. Seifi,
Volume 23, Issue 2 (Summer 2019)
Abstract

Evaluation of groundwater hydro chemical characteristics is necessary for planning and water resources management in terms of quality. In the present study, a self-organizing map (SOM) clustering technique was used to recognize the homogeneous clusters of hydro chemical parameters in water resources (including well, spring and qanat) of Kerman province; then, the quality classification of groundwater samples was investigated for drinking and irrigation uses by employing SOM clusters. Patterns of water quality parameters were visualized by SOM planes, and similar patterns were observed for those parameters that were correlated with each other, indicating a same source. Based on the SOM results, the 729-groundwater samples in the study area were grouped into 4 clusters, such that the clusters 1, 2, 3, and 4 contained 73%, 6.2%, 6.7%, and 14.1% of groundwater samples, respectively. The increase order of electrical conductivity parameter in the clusters was as 1, 4, 3 and 2. The results of water quality index based on the entropy weighting (EWQI) showed that all of the samples with excellent and good quality (36.3% of samples) for drinking belonged to the cluster 1. According to the Wilcox diagram, 435-groundwater samples (81.7%) in the cluster 1 had the permitted quality for irrigation activities, and the other 285-groundwater samples were placed in all four clusters, indicating the unsuitable quality for irrigation. The Piper diagram also revealed that the dominant hydro chemical faces of cluster 1 were Na-Cl, Mixed Ca-Mg-Cl and Ca-HCO3, whereas the clusters 2, 3, and 4 had the Na-Cl face. This study, therefore, shows that the SOM approach can be successfully used to classify and characterize the groundwater in terms of hydrochemistry and water quality for drinking and irrigation purposes on a provincial scale.

F. Soroush, F. Fathian,
Volume 25, Issue 1 (Spring 2021)
Abstract

In the present study, the spatial and temporal changes of climate variables such as pan evaporation (Ep), temperature (T), relative humidity (RH), sunshine duration (SD), wind speed (W) and precipitation (P), as well as their relationship with altitude, were investigated. For this purpose, 68 meteorological stations with 30 years of data (1987-2016) throughout Iran on both seasonal and annual time scales were selected. Trend analysis of climate variables showed that over the past 30 years, most areas of Iran have become warmer and drier although all trends have not been significant. Investigation of the relationship between the trend slope of climate variables and altitude illustrated that there was no significant relationship between them during the study period on the annual time scale (p>0.1). However, in winter, the rate of increase in T (minimum, maximum and mean temperatures) and SD (p<0.1), as well as the rate of decrease in P (p<0.01), was significantly enhanced by increasing the altitude. The increase in mean and maximum T (p<0.1) and SD rates (p<0.001) in summer were significantly lower in the highlands than in the lowlands. In autumn, the trend slopes of minimum and mean T (p<0.05) were negatively correlated with altitude; in addition, the rates of increase in P and RH (p<0.05) in the highlands demonstrated a sharper increase. It seems, therefore, that most changes in climate variables have occurred in both autumn and winter. The results also showed that in winter, the highest rates of increase in Ts were related to the altitude of 1500-2000 m; however, the highest decrease in P belonged to the altitude of 2000-2500 m. In autumn, the highest rates of decrease in minimum and mean Ts had occurred in the altitude of 2000-2500 m; as well, he highest rate of increase in P was observed in the altitudes of both 0-500 m and 2000-2500 m.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb