Search published articles


Showing 6 results for Tadayon

A. Gheisari, R. Bahadoran, S. S. Tadayonfar,
Volume 7, Issue 2 (summer 2003)
Abstract

In order to study the nutritive value of grades 1 and 2 wheat feed screening and macaroni wastes as energy resources, 360 21-day-old broiler chicks were divided into 36 groups of 10. In this experiment, each experimental levels of feedstuff was used at 0 (control group), 15, 30 and 45%. In addition, their apparent metabolizable energy (AMEn) was determined by Sibbald’s method. Daily feed intake of chicks fed by diets containing macaroni wastes and grade 1 wheat feed screening for 21 to 56 days of age was significantly lower than that in the control group (P<0.05). In contrast, body weight, daily weight gain and feed conversion had no significant differences during this period. However, in the total experimental period, the best feed conversion belonged to chicks fed with various levels of macaroni wastes and grade 1 wheat feed screening. Apparent metabolizable energy (AMEn) of macaroni wastes and wheat feed screening were 3700, 3270, and 2870 kcal/kg, respectively. According to the results of this experiment, it is possible to use macaroni wastes and grade 1 wheat feed screening at 45% and 30% levels in the diet of broiler chicks, respectively, without any undesirable effects on their performance.
M. R. Tadayon, Y. Emam,
Volume 11, Issue 1 (spring 2007)
Abstract

In order to study the physiological responses of two barley cultivars to salinity stress, a 4-replicate CRD greenhouse experiment was conducted during at the College of Agriculture, Shiraz University, Iran2003-2004. The treatments consisted of two barley cultivars: Afzal and Reyhan and five salinity levels: 0, 4, 8, 12 and 14 dS/m. Seedling emergence, number of tillers and leaves per plant, leaf area and dry matter decreased with increasing salinity levels. The reductions were lower in Afzal (salt tolerant) than Reyhan (salt sensitive). A lower Na+ and higher K+Na+ in Afzal compared to Reyhan were observed under high level of salinity. The results of the present experiment also showed that the tolerance to salinity was associated with a greater stomatal conductivity, as well as transpiration and photosynthesis rate. Sub-stomatal CO2 concentration in both cultivars decreased with an increase in salinity, with the exception of 12dS/m, where it led to an increase in sub-stomatal CO2 concentration. Leaf temperature increased with an increase in salinity level in both cultivars, whereas a more pronounced decrease for number of fertile tillers, ears per plant, kernels per ear, thousand grain weight and harvest index was observed in Reyhan compared to Afzal .Since a higher tolerance to salinity in Afzal was apparently associated with a lower concentration of Na+ and a higher K+/Na+ ratio of the shoots, this trait could probably be used for yield improvement of barley cultivars under saline conditions.
M.r. Tadayon, Y. Emam,
Volume 11, Issue 42 (winter 2008)
Abstract

  Photosynthesis and wheat grain yield responses to supplemental irrigation with different amount of applied water under dryland conditions were investigated. Therefore, a two-year field experiment was conducted research farm of College of Agriculture, Shiraz University during 2004-2005. Five levels of irrigation including dryland conditions, irrigation at stem elongation, booting, flowering and grain filling were main plots and two wheat cultivars: Agosta and Fin-15 were subplots, and three rates of nitrogen including zero, 40 and 80 kgha-1 were sub sub-plots. The results showed that in both years, photosynthetic rate, stomatal conductance, substomatal CO2 concentration and transpiration rate, were significantly higher under irrigation at stem elongation stage compared to other supplemental irrigation treatments. In all of the four supplemental irrigation treatments, photosynthetic rate, stomatal conductance, substomatal CO2 concentration and transpiration rate decreased with decreasing the amount of applied water to each plot. In both years, the highest grain yield was obtained from supplemental irrigation at stem elongation stage, and the lowest yield was harvested at dryland conditions. The highest photosynthetic parameters, yield and yield components were obtained from interaction of supplemental irrigation at stem elongation stage × Fin-15 and 80 kg N ha-1 in both years. The supplemental irrigation in 2004 and 2005 increased the grain yield 200 and 221 percent, respectively, compared to dryland conditions. Thus, supplemental irrigation at sensitive stem elongation stage could affect significantly wheat grain yield of rainfed wheat cultivars and provision of adequate water for a supplemental irrigation at the appropriate growth stage could double the grain yield of rainfed wheat.


M. R. Tadayon,
Volume 12, Issue 45 (fall 2008)
Abstract

In order to investigate the effect of sugar plant effluent on shoot solute percentage, yield components and grain yield of two wheat cultivars, a two year field experiment was conducted on a farm near Eghlid sugar plant during 2004-2005. Treatments consisted of two wheat cultivars (Alamot and Zarin) and two irrigated treatment: irrigation with effluent and irrigation with spring water (control). The statistical design was a completely randomized factorial with three replications. The results showed that under effluent treatment, nitrogen, phosphorus and calcium percentage increased in shoot, and Fe, Mn, Zn, Cu and B concentration decreased. However, effluent treatment had not any significant effect on K, Mg and S concentration. The results showed that N percentages in Alamot and Zarin cultivar under control treatment were 2.41 and 2.54% and under effluent treatment were 3.28 and 3.41%, respectively. P percentages under control treatment were 0.42 and 0.47% and under effluent treatment were 0.46 and 0.51%, respectively. Ca percentages under control treatment were 0.29 and 0.32% and under effluent treatment were 0.46 and 0.51%, respectively. In both years, the lowest number of tiller, number of spike, number of kernel per spike, thousand kernel weight, grain yield and harvest index were obtained from effluent treatment in the two wheat cultivars whereas this reduction was higher in Alamot than Zarin cultivar. In Alvand and Zarin cultivars, the lowest number of tiller per plant with 2.33 and 2.50, number of spike per plant with 1.83 and 1.92, number of kernel per spike with 31.67 and 32.50, grain yield with 5233 and 5532 kg ha-1 and harvest index with 32.03 and 33.53% and water productivity with 0.72 and 0.75 kg m-3 were respectively obtained from effluent treatment compared to control. Thus, the results showed that using sugar plant effluent could decrease grain wheat quality and wheat grain yield.
A. H. Khoshgoftarmanesh, E. S. Razizadeh, H. R. Eshghizadeh, H. R. Sharifi, Gh. Savaghebi, D. Afiuni, M. Tadayonnejad,
Volume 15, Issue 58 (winter 2012)
Abstract

This study was conducted in Rudasht Research Farm Isfahan, to evaluate tolerance to iron (Fe) deficiency of 30 spring wheat genotype, using split plots in a randomized complete block design with three replications. Main plot consisted of two Fe levels (0 and 20 kg Fe ha-1 applied as FeEDDHA at planting and beginning of vegetative growth). Grain yield increased by 14% following the application of 20 kg Fe ha-1 as FeEDDHA. Application of Fe significantly increased grain yield of all wheat genotypes except for Rushan. The result indicated that Mean Productivity (MP), Geometric Mean Productivity (GMP) and Stress Tolerance Index (STI) were the most suitable indices for identifying and selecting Fe-deficiency tolerant wheat genotypes. By using both treatments with and without added Fe, grain yield showed significant (P < 0.01) positive correlation with MP, GMP and STI. The STI could divide the studied wheat genotypes in different groups based on both their response to fertilization and grain yield potential. Therefore, the STI was the best index to identify Fe deficiency tolerant genotypes. Based on the three indices, Ghods and Falat genotypes were the most tolerant and sensitive genotypes to Fe deficiency, respectively
E. Ahmadpoor Dehkordi, M. R. Tadayon, A. Tadayon,
Volume 19, Issue 73 (fall 2015)
Abstract

In order to evaluate the effect of urban wastewater and different fertilizer sources on macro and micro nutrients' concentration and shoot dry weight of sugar beet, a field experiment was arranged as a split plot in RCBD design with three replications at Research Station of Shahrekord University in 2013. The main factors included irrigation with urban wastewater at 2-4 leaf stage and 8-12 leaf stage, and irrigation with normal water (control). The four types of fertilizer included sheep manure, spent mushroom compost, chemical fertilizer and no fertilizer (control) in the sub-plot. The results showed that the plot irrigated with urban wastewater at 8-12 leaf stage significantly increased leaf number and shoot dry weight of sugar beet compared to the plot irrigated with tap water. Besides, the plot irrigated with urban wastewater at 8-12 leaf stage had a significant effect on the elements of N, P and K concentration in shoot dry weight of sugar beet, but the plot irrigated with urban wastewater did not significantly affect the elements of Fe and Zn concentration. From among the fertilizer treatments, the maximum shoot dry weight and leaf number per plant belonged to the application of sheep manure and also the highest elements of Fe and Zn concentrations belonged to the treatment of spent mushroom compost.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb