R. Ghobadian, , E. Merati, A. Taheri Tizro,
Volume 17, Issue 63 (Spring 2013)
Abstract
Stage – discharge relationship is mainly developed from measured data in any hydrometry station. Measured data usually obtain in low to medium flow discharge, because in most cases it is very difficult to measure the flow discharge during flood. Therefore, the stage–discharge is extrapolated beyond the measured data to compute the flood which may estimate low or higher value. This is because during the high flow, the bed form is developed which causes the flow resistance to change. In order to establish a better stage – discharge relation, it is important to apply methods which consider the bed form resistance. In this study an attempt has been made to determine the best method for developing such relationship. To reach the goal, the required data such as river cross section, discharge and related stage and bed material gradation from Ghorbaghestan hydrometry station were measured for two years. Then a computer program was developed. Using this program and applying the measured data, the stage – discharge relationships were computed by five different methods. From the statistical comparison of the results of these methods with measured data, it was found that Shen, Brownlie, Engelund and White’s method overestimate the flow discharge. The best method was found to be the Einstein – Barbarossa’s method that provided the minimum absolute mean errors 0.31 and 1.468 m3/s and minimum root mean square error 0.112 and 0.466 m3/s for the two study years, respectively
A. Taheri Tizro, H. Nozari, H. Alikhani,
Volume 20, Issue 76 (Summer 2016)
Abstract
To procure the status of groundwater level fluctuations in arid and semi-arid areas, it is necessary to obtain accurate forecast of fluctuations data. Time series as a linear model have been utilized to generate synthetic data and predict future groundwater level. Minitab17 software and monthly depth of groundwater level data of 20 years (1991-2011) for 25 piezometric wells of plain were used. Time series models of each well were selected and 5 years temporal forecasting was accomplished. The predicted depth of groundwater level data was converted to Groundwater level data using ARCGIS10 and GS+5.1.1 software. Ordinary kriging with a spherical variogram was selected for interpolation of groundwater level. Five years spatial forecasting was done and spatial forecasting and groundwater level drop forecasting maps were prepared. Forecasting results of groundwater level show that over the next 5 years, the area covered by two intervals of groundwater level, 1100-1140 m and 1140-1180 m, will increase and the area covered by three ranges of 1180 -1220 m, 1220-1260 m, and 1260-1300 m, will decline. Also, according to the 5-year groundwater level drop forecasting map of the plain, the highest level of groundwater level drop, more than 16 meters for Qasemabad bozorg areas, located in North East and central of the plain, and the lowest level of the groundwater level drop, about 0.5 m for Mohammad Abad Afkham Aldoleh Lands, located in outlet area of the plain, have been predicted.