Search published articles


Showing 5 results for Yarahmadi

S. Yarahmadi, S.r. Mirai Ashtiani, R. Ebadi, G.h. Tahmasebi,
Volume 5, Issue 2 (summer 2001)
Abstract

In this study 130 honeybee colonies in 4 locations (Damavand, Tehran, Qum and Karaj-Savojbolagh) were sampled to determine the phenotypic correlations among 9 morphological and 3 production traits. The morphological traits were length (FL) and width (FB) of fore wing, cubital index (CI), length of hind leg (HL), length of probosics (LP), slender index (SI), length (WL) and width (WT) of wax mirror, distance between wax mirror (WD), index of wax mirror (IW) and corbicular area (CA). The production traits were honey yield (WH), pollen gathering (WP) and wax: production (WW). Data were subjected to analysis of variance, phenotypic correlations, stepwise regression and path coefficient analysis. Results of phenotypic correlations demonstrated that correlations between FL with FB (0.65), WL (0.361), WT (0.261), HL (0.555) and LP (0.257), WH with WP (0.300), WW with WH (0.560) and CA with WH (0.234) were significant (P≤0.01). FB with WH (r=0.204) was also significant but there was no significant correlation between CA and WP. Results of stepwise regression and path coefficient analysis showed that whereas morphological traits were settled as independent variables, much of the corresponding changes in production traits remain uninterpreted. In spite of the significant correlations among several morphological and production traits, body measurements alone are not suitable criteria to select colonies for high productions of honey, pollen and wax.
A. Haghizadeh, H. Yousefi, P. Nourmohammadi, Y. Yarahmadi,
Volume 22, Issue 3 (Fall 2018)
Abstract

To determine the potential for groundwater contamination, vulnerability should be evaluated in different areas susceptible to contamination should be investigated. Aquifer (carbonate) karst or part of it is karst aquifer in the western region of Iran; due to the natural conditions of the region and human activities, they are susceptible to contamination by carbonate aquifer through holes devourer and feeding point leading to pollution. The aim of this study was to analyze aquifer vulnerability zoning map karst plain elster by using COP. This model uses three parameters including lining (O) the concentra flow(C) and precipitation regime (P) to assess the vulnerability of groundwater against pollution GIS software. The results showed that the plain with an area 7.8 km2 was dominated in terms of vulnerability, being in the middle class. Other classes, respectively, were low with the area 18.69 km2, high with the  area 0.65 km2 as part of the northeast plain, and much less with the  area of  0.6 km2 , The results of the sensitivity analysis  also showed that at the factorization (P) due to appropriate rainfall area, the  maximum impact was in determining the vulnerability  of the area. And the factor (C) minimum has impact on determining the vulnerability of the area. Due to the small size of the mature karst area, the wide extent of non-karst region was shown for the verification of results related to electrical conductivity data (EC) against discharge wells in the region with the high vulnerability and moderate. A comparison was made too.

M. Heydari, M. Bahrami Yarahmadi, M. Shafai Bejestan,
Volume 26, Issue 2 (ُSummer 2022)
Abstract

Bed shear stress is one of the most important hydraulic parameters to determine the amount of bed and suspended load and the bed and bank scouring in rivers. Bed shear stress depends on bedforms (ripples, dunes, and anti-dunes) in alluvial rivers. In this study, the effect of artificial ripple bedforms on bed shear stress has been investigated. Two types of uniform granulation with average sizes (d50) of 0.51 and 2.18 mm were used to roughen the surface of the artificial ripples. The bedform length and height were 20 and 4 cm, respectively. The angles of its upstream and downstream to the horizon were selected equal to 16.4 and 32 degrees, respectively. Different flow rates (Q= 10, 15, 20, 25, and 30 l/s) and different bed slopes (S= 0, 0.0001, 0.0005, 0.001, and 0.0015) were examined. The results showed that by increasing the particle size on the bed surface, total shear stress (tb ), grain-related bed-shear stress (t¢b ), and form-related bed-shear stress ( t²b )  increase. The value of tb , t¢b , and t²b in bed form roughened by sediment size of 2.18 mm were, on average, 22.38, 30.86, and 22.3% more than the bed form roughened by sediment size of 0.51 mm, respectively.

M. Badzanchin, M. Bahrami Yarahmadi, M. Shafai Bejestan,
Volume 27, Issue 1 (Spring 2023)
Abstract

The formation of bed form in alluvial rivers due to sediment transport has a significant effect on the hydraulic parameters of the flow such as bed shear stress. The formation of the bed form and its shape and geometry depends on the bed shear stress. Therefore, the relationship between bed form and flow parameters (such as bed shear stress) is complicated. In the present study; the effect of dune bed forms with different heights on bed shear stress has been investigated. Artificial dunes made by sand-cement mortar with a length of 25 cm and heights of 1, 2, 3, and 4 cm were used. In the tests of this research, flow discharge of 10, 15, 20, 25, and 30 l/s and bed slopes of 0, 0.0001, 0.0005, 0.001, and 0.0015 were used. The results showed that with increasing the relative submergence and Δ/λ, the bed shear stress increased in dune-covered beds. The formation of the dune bed form and the increase in its height leads to an increase in the bed shear stress. The bed shear stress in dunes with a height of 1, 2, 3, and 4 cm was, on average, 39, 80, 141, and 146% more than in plane beds, respectively. Moreover, form shear stress for dunes with a height of 1, 2, 3, and 4 cm was, on average, 27.37, 43, 57.11, and 58.74% of the total shear stress, respectively.

L. Hashemi, S. M. Kashefipour, M. Ghomeshi, M. Bahrami Yarahmadi,
Volume 28, Issue 2 (Summer 2024)
Abstract

Local scour around bridge piers is one of the most significant factors for the bridges’ destruction. Therefore, it is necessary to investigate the scour depth around the bridge piers. The effect of the skew angle of the single-column pier group related to the flow direction in two different arrangements including 1×2 and 1×3 piers on the maximum scour depth around the pile group was investigated in this study. The experiments were carried out under steady flow conditions. The pier group was placed in the 1×2 arrangement at the skew angles of 0 to 90 degrees and in the 1×3 arrangement at the skew angles of 0 to 45 degrees. The results showed that increasing the skew angle of the pier group is almost ineffective on the maximum scour depth around the first pier. However, it has a great effect on the maximum scour depth, its temporal development, and the expansion of the scour hole around the second and third piers in different arrangements of the pier groups. The maximum scour depth of the pier group in both different arrangements occurred at a skew angle of 30 degrees, in the arrangement of 1×2 around the second pier and by 13.33% more than the first pier and in the arrangement of 1×3 around the third pier and by 21.57% more than the first pier.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb