Showing 2 results for Zare Abiane
Z Maryanji, A Sabziparvar, F Tafazoli, H Zare Abianeh, H Banzhad, M Ghafouri, M Mousavi,
Volume 12, Issue 46 (1-2009)
Abstract
Under different climatic conditions of Iran, the evaluation of evapotranspiration (ETo) models sensitivity to meteorological parameters, prior to introducing the superior performance model, seems quite necessary. Using a 35-year (1971-2005) climatological observations in Hamedan, this study compares the sensitivity of different commonly used evapotranspiration models to different meteorological parameters within the IPCC recommended variability range of 10 to 20% during the growing season (April-October). The radiation and temperature-based ETo models include: Penman-Monteith -FAO56 [PMF56], Jensen-Haise [JH1,2], Humid Turc [TH], Arid (semi) arid Turc [TA], Makkink [MK], Hansen [HN], and Hargreaves-Samani [HS]. Results indicate that all the above-mentioned ETo models show the highest sensitivity to radiation and temperature parameters. This implies that special care is required when we apply model-generated radiation and albedo parameters in such ETo models. It is predicted that by 2050, as a result of global warming, the cold semi-arid climates of Iran will cause an average evapotranspiration rise of about 8.5% in crop reference during the growing season.
H Tabari, S Marofi, H Zare Abiane, R Amiri Chayjan, M Sharifi, A.m Akhondali,
Volume 13, Issue 50 (winter 2010)
Abstract
In mountainous basins, snow water equivalent is usually used to evaluate water resources related to snow. In this research, based on the observed data, the snow depth and its water equivalent was studied through application of non-linear regression, artificial neural network as well as optimization of network's parameters with genetic algorithm. To this end, the estimated values by artificial neural network, neural network-genetic algorithm combined method and regression method were compared with the observed data. The field measurement were carried out in the Samsami basin in February 2006. Correlation coefficient (r) mean square error (MSE) and mean absolute error (MAE) were used to evaluate efficiency of the various models of artificial neural networks and nonlinear regression models. The results showed that artificial neural network and genetic algorithm combined methods were suitable to estimate snow water equivalent. In general, among the methods used, neural network-genetic algorithm combined method presented the best result (r= 0.84, MSE= 0.041 and MAE= 0.051). Of the parameters considered, elevation from sea level is the most important and effective to estimate snow water equivalent.