Search published articles


Showing 2 results for Zohrabi

N. Zohrabi, A. Massah Bavani, E. Goudarzi, M. Heidarnejad,
Volume 20, Issue 77 (Fall 2016)
Abstract

Since climate change is regarded as a serious threat to different parts of life cycle, separation of factors intensifying this phenomenon seems necessary. This research has investigated the temperature and precipitation trend using the multiple trend test in the upstream Karkheh basin located in west of Iran. For this purpose, two-dimensional graphs of temperature and precipitation anomalies of the CGCM3 Model (1000-year data) were drown for the study area. Then, the attribution of changes in climate variables due to climate internal fluctuations or greenhouse gases affected by human factors were investigated. Based on the findings of this study, in different parts of the study area, the range of natural climate variables for temperature and precipitation changes (95% probability) in the west of the study area are
± 1.4ºC and ±76%, respectively.

The results showed increase and decrease in temperature and precipitation in most of the studied stations, respectively. The variables of temperature and precipitation are affected by climate change and as we approach latest years, especially in the western and central parts of the study area, the impact of greenhouse gases in increasing temperature and reducing precipitation becomes more evident. According to the current results it can be concluded that changes in land use in Iran caused by human interventions can be introduced as a significant factor for the ascending trend of temperature. However, it can be noted that the most important factors of the increased greenhouse gases in recent years are human activities such as land use changes. These changes certainly have affected water resources in the study area.


B. Navidi Nassaj, N. Zohrabi, A. Shahbazi,
Volume 23, Issue 2 (Summer 2019)
Abstract

Integrated simulation of water resources systems is an efficient tool to evaluate and adopt various options in macro-policies and decision-making procedures that are in line with the sustainable development of drainage basins. One of the drainage basin management policies is to enhance the efficiency of agricultural land use. Considering the complicated function of the drainage basin elements and their interaction with each other due to water discharge fluctuations caused by various factors such as climate change, the evaluation of these policies is of great importance. Given the low irrigation efficiency in Iran, the present study was aimed to evaluate the effects of management scenarios (including long-term irrigation efficiency increased up to 20% with 5% intervals) and discharge fluctuation scenarios (including 5% and 10% decrease in the average basin inflows) on the reliability and vulnerability of water resources system in Dez Basin. The integrated scenarios were simulated in the WEAP model. The scenarios were separately simulated for the Dez irrigation network and all farmlands across Dez Basin. According to the results, reliability was decreased by 5.69 and 18.89% in the scenarios with 5% and 10% decrease in the average basin inflows, respectively. Furthermore, the irrigation efficiency of 20% in the scenario considering the current inflows ended up with the reliability of 73.58%. Moreover, in the scenario involving 5% decrease in the average basin inflows, the reliability was increased by 3.8% with an increasing efficiency of 20%; with 3.8% and 5.7%, there was an increasing efficiency of 15% and 20% in all farmlands, respectively. In the scenario consisting of 10% decrease in average basin inflows, the reliability was increased by 1.91%, 3.8%, and 5.7% with the increasing efficiency of 10%, 15%, and 20%; on the other hand, with, these were 3.8% 9.46%, and 13.2% with increasing efficiency in all farmlands, respectively. In all scenarios, the vulnerability was found to fluctuate between 25% and 31%, which was systematically analyzed.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb