Search published articles


Showing 6 results for rezapour

R. Hamzenejad Taghlidabad, H. Khodaverdiloo, S. Rezapour, Sh. Manafi,
Volume 16, Issue 60 (Summer 2012)
Abstract

Soil contamination with heavy metals, including Cd and Pb, is of serious concern. The aim of this study was to investigate the efficiency of Atriplex verucifera, Salicornia europaea and Chenopodium album for simultaneous remediation of soil exchangeable sodium percentage and Cd and Pb contamination in two soils with different properties. Two soils, including a saline-sodic-calcareous (S1) and calcareous (S2) soil, were selected. Different concentrations of Pb and Cd were then added to the soils. The contaminated soils were incubated under a wetting-drying cycle for nearly seven months. The plants, seeds were grown in pots containing different treatments of polluted soils and in control treatment (no Cd and Pb contaminations). The plant yields and concentrations of Pb, Cd and Na in the soil and plant samples were measured. A considerable accumulation of soil Cd by Salicornia and Pb accumulation by Atriplex and Salicornia was observed under unsuitable conditions of the saline-sodic soil, whereas Atriplex and Chenopodium had high capability for Cd in the soil S2. Also these plants caused the reduction of ESP in soil S1. The results revealed that these plants could be used for remediation of Pb and Cd contaminated soils. In this study, Salicornia with lower rate of yield reduction had the highest tolerance to Cd-stress. Understanding the complex plant and soil (salinity-sodicity and soil metal concentration) factors controlling the metals concentrations in the plants will help to design phytoextraction technology for arid, salt-affected regions.
O. Mohammadrezapour, M. J. Zeynali,
Volume 22, Issue 1 (Spring 2018)
Abstract

One of the most important issues in the field of optimizing water resources management is the optimal utilization of the dam reservoirs. In the recent decades, the optimal operation of dams has been one of the most interesting issues considered by water resources planners in the country. Due to the complexities of the typical optimization methods, employing an evolutionary algorithm is regarded here. One of the most significant algorithms is the ant colony algorithm. So the aim of this study is to optimize the delivery of Golestan and Voshmgir reservoirs to meet the needs of the down lands using the elite ant colony algorithm, maximum – minimum ants, ranked ants, and particle swarm algorithms, and to compare the performance of these algorithms with each other. The considered decision variable was the release of the reservoirs in the above- mentioned dams. In this study, the data over a 5-year period, from 2006-2007 to 2011-2012, was used for modeling. The results showed that all algorithms could optimize the release amount optimally; however, the elite ant algorithm with the objective function value of 0.6407 estimated the release values with great accuracy in both dams. Also, the particle swarm algorithm with 1.275 of the objective function value was well-matched with the release values.  The ranked ant algorithm with 18.924 and Max-Min ant with 26.431 of the objective function valuewere, respectively, at the next levels of performance optimization of the release values from Golestan and Voshgar dams.

B. Atashpaz, S. Rezapour,
Volume 23, Issue 2 (Summer 2019)
Abstract

The present study was conducted to evaluate the ecological risk indices of Zn, Cu, Cd, Pb and Ni in the soils from Urmia region (Ghahramanloo village), as irrigated with treated wastewater. Accordingly, six different soil sites (five soil sites under wastewater irrigation and one soil site under well water irrigation as the control) were selected and sampled (AP horizon, 0-30 cm depth). Soil samples were air dried, passed through a 2-mm sieve, and analysed to determine the chemical properties and the studied heavy metals. The results showed that irrigation with the treated wastewater significantly increased the total elements in the order of Cd (228%)> Zn (118.5%)> Ni (81.5%)> Pb (54.2%)> Cu (23.5%). Nevertheless, with the exception of cadmium, other elements were within the admissible range based on the national and international standards. Ecological risk index (min = 125, max = 152, mean = 140) showed a considerable risk in all studied soils and Cd could be regarded as the major metal affecting the index yield.

S. Rezapour, P. Najafi, B. Atashpaz,
Volume 24, Issue 2 (Summer 2020)
Abstract

In the present study, six soil profiles belonging to five soil types were dug, described and sampled. Soil samples were analyzed for the determination of different physicochemical properties and total and DTPA-extractable iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), lead (Pb), and cadmium (Cd). Considering the variability of pH and calcium carbonate equivalent, the examined soils were alkaline and calcareous. A considerable change in the values of the DTPA fraction of Fe (1.4-25.8 mg/kg), Zn (0.01-3.3 mg/kg), Cu (0.32- 6.2 mg/kg), Mn (1-11.8 mg/kg), Cd (0.05- 0.12 mg/kg) and Pb (0.22- 2.56 mg/kg) as well as in the total fraction of Fe (10.6-20.6 g/kg), Zn (35- 67.5 mg/kg), Cu (9 to 26.40 mg/kg), Mn (262- 588.8 mg/kg), Cd (0.5- 1.75 mg/kg) and Pb (17- 31.3 mg/kg) was observed in  different soils. The content and pattern of both DTPA and total fraction of the metal were varied among the soil types, which could be related to several processes such as the diversity of weathering rate, geomorphologic condition, soil formation process, different physicochemical properties of soils, and the inputs of different agrochemical compounds. The concentration of both DTPA and total fraction of the metal were in the acceptable maximum level in the majority of the soil samples.

A. Rezapour, M. Hosseini, A. Izady,
Volume 25, Issue 4 (Winiter 2022)
Abstract

Integrated assessment of the watershed is critical in arid and semi-arid areas due to the severe water stress in these regions. Data and information are an essential part of decision making and water governance to obtain integrated water resources management at the watershed scale. Water accounting is a helpful tool to organize information and present them as the standard indicators to achieve this goal. Therefore, the objective of this study is to implement the Water Accounting Plus framework (WA+) in the Ferizi watershed located in the Khorasan-e Razavi Province. In this study, water accounting indicators of the Ferizi watershed for a period of 28 years (1990-2017) and wet (1990-1997) and dry (1998-2009) periods were calculated using the SWAT model. The calculated indicators showed that the amount of manageable water and usefulness of consumption (transpiration) is low in the watershed and a large part of the share of irrigation in the watershed is provided by groundwater resources. Generally, the results of this study showed that the use of the SWAT model, WA+ framework, and analysis of water accounting indicators play a significant role in assessing the agricultural and hydrological conditions of the watershed. The proposed approach in this study can help managers make enlightened decisions to keep the sustainability of the watershed.

A. Barikloo, S. Rezapour, P. Alamdari, R. Taghizadeh Mehrjardi,
Volume 27, Issue 4 (Winter 2023)
Abstract

Soil quality is one of the most crucial factors determining crop productivity and production stability. The soil's physical, chemical, biological, and ecological characteristics affect its quality. Numerous researchers have concentrated the evaluation on a small number of soil quality indicators because measuring all soil quality indicators would be time-consuming and expensive. This study looked at the spatial autocorrelation of soil quality in the southwest areas of the Urmia Plain to establish the minimal data set for quantitative assessment. To accomplish this, 120 composite soil samples were collected from a depth of 0 to 60 cm, and the soil quality index was then calculated using the IQI method in 4 modes: Total-Linear (IQIwL-TDS), Total-Nonlinear (IQIwNL-TDS), Minimum-Linear (IQIwL-MDS), and Minimum nonlinearity (IQIwNL-MDS). 22 physical and chemical characteristics were used to choose the data set. The characteristics of sand percentage, sodium absorption ratio, cation exchange capacity, Available phosphorus, active calcium carbonate, and nickel concentration were chosen as the minimum data set (MDS) using the decomposition method into principal components. The linear IQIMDS mode produced the greatest soil quality index result, whereas the non-linear IQIMDS mode produced the lowest. The non-linear mode of the IQI index has a greater correlation coefficient (R2=0.85) than the linear mode of the IQI index (R2=0.73), according to an analysis of the linear and non-linear correlation coefficient between the soil quality index with the total category and minimum data. The findings of computing the global Moran's index for study sets of IQI soil quality index data revealed that the soil quality data are not independent of each other and are spatially autocorrelated, distributed in clusters, and have spatial autocorrelation. Getis-ord GI statistics indicated that the eastern and southeastern parts of the research region comprise clusters with poor soil quality, salt marshes produced by Lake Urmia's drying up, and surrounding arid plains.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb