Search published articles


Showing 14 results for shirvani

M. Shirvani, H. Shariatmadari,
Volume 6, Issue 1 (spring 2002)
Abstract

Phosphate sorption by soils is one of the most important processes indicating the buffering power and availability of P for plants. Phosphorus sorption characteristics of eight representative calcareous soil of Isfahan region were evaluated. For this purpose, 3 grams, of < 2-mm soil were equilibrated for 24 hours at 25±l °C in 60 ml of 0.01 M CaCl2 with varying amounts of P. Sorbed phosphorus was calculated by the difference between P initially added and P remaining in the final solution. Langmuir, Freundlich, Temkin and Van Huay equations were fitted to the sorption data.

 All four equations adequately described the relationship between sorbed and solution P, but the Van Huay model was slightly superior. Some phosphorus buffering indices were calculated from the sorption isotherms. These buffering indices were highly related to each other as well as to soil properties. Clay percent showed the highest correlation with buffering indices (r=0.771 to 0.949) followed by calcium carbonate equivalent (CCE) and cation exchange capacity (CEC). The quantity of P sorbed at standard concentration of 0.3 µg P/ml (SPR) is reported to the amount that satisfies the phosphate requirement of many crops. This parameter was calculated from Van Huay equation and showed a strong correlation with buffering indices (r=0.807 to 0.990) and soil properties such as clay (r=0.960) and CCE (r=0.809) percents. Regression analysis suggested that clay and CCE percents were the most important soil properties for estimating the buffering power and the standard P requirement of the calcareous soil in Isfahan region.


S. M. J. Nazemosadat, A. Shirvani,
Volume 8, Issue 1 (spring 2004)
Abstract

In Iran, about 75% of national rice production is supplied in Gilan and Mazandaran proviences which have the highest amount of precipitation. Seasonal prediction of rainfall induces significant improvement on yield production and on preventing climate hazardz over these feritle areas. Canonical correlation analysis (CCA) model was carried out evaluates the possibility of the prediction of winter rainfall according to the states of ENSO events. The time series of (southern oscilation index (SOI) and SST (sea surface temperature) over Nino's area (Nino's SST) are used as the predictors, and precipitation in Bandar Anzali and Noushahr are used as the predictands. Emperical orthogonal functions (EOF) were applied for reducing the number of original predictors variables to fewer presumably essential orthogonal variables. Four modes of variations (EOF1, EOF2, EOF3, EOF4) which account for about 92% of total variance in predictors field were retained and the others were considered as noise. Based on the retained EOFs and precipitation time series, the canonical correlation analysis (CCA) was carried out to predict winter precipitation in Noushahr and Bandar Anzali. The results indicated that the predictors considered account for about 45% of total variance in the rainfall time series. The correlation coefficents between the simulated and observed time series were significant at 5% significant level. For 70% of events the anomalies of observed and simulated values have the same sign indicating the ability of the model for reasonable prediction of above or below normal values of precipitation. For rainfall prediction, the role of Nino's SST (Nino4 in particular) was found to be around 10% more influential than SOI. .
M. J. Nazemosadat, A. Shirvani,
Volume 9, Issue 3 (fall 2005)
Abstract

Since the fluctuations of the Persian Gulf Sea Surface Temperature (PGSST) have a significant effect on the winter precipitation and water resources and agricultural productions of the south western parts of Iran, the possibility of the Winter SST prediction was evaluated by multiple regression model. The time series of PGSSTs for all seasons, during 1947-1992, were considered as predictors, and the time series of MSSTs during 1948-1993, as the prrdictand. For the purpose of data reduction and principal components extraction, the principal components analysis was applied. Just the scores of the first four PCs (PC1 to PC4) that accounted for the total variance in predictor field were considered as the input file for the regression analysis. For finding the dependency of each principal component to the first time series of the PGSST, the Varimax rotation analysis was applied. The results have indicated that PC1 to PC4 respectively are the indicator of temperature changes during winter, autumn, Spring and Summer. According to the regression model, the components of PC1, PC2 and PC4 were significant at 5% level. But the components of PC3 was insignificant. The results indicated that the significant variables are held accountable for the 33.5% of the total variance in the winter PGSSTs. It became obvious that for the prediction of the winter PGSST, the PGSST during the winter of the last year has a particular importance. At the next stage, autumn and summer temperature have also a role in prediction of winter PGSST.
B. Najafi, A. Shirvanian, T. Haghshenas,
Volume 12, Issue 45 (fall 2008)
Abstract

In the process of agricultural development, sustainability of pasture utilization to ensure sustained production of meat and dairy products has become increasingly important. This article aims to study factors affecting pasture and meat production imbalances in Fars province. For this purpose, the transcendental production function was used. Data was collected by using two stage cluster random sampling from 71 producers. The results revealed that present method of pasture utilization is not compatible with increasing live animal meat production objective. To optimize pasture utilization, the pasture users should be advised to stop overgrazing. In addition, the results indicated that increasing livestock and pasture mismanagement causes damage to pastures and consequently would decrease meat production in the long-run.
F. Alsadat Hodaee Koskkoee, H. Shariatmadari, M. Hamidrpour, M. Shirvani,
Volume 18, Issue 70 (winter 2015)
Abstract

Sorption hysteresis in soil constituents has important environmental implications such as pollutant transport and bioavailability. This research was carried out to study sorption reversibility of cadmium (Cd) on natural zeolite. Sorption isotherms were derived by sorption of Cd (П) from solutions containing different concentrations of Cd in the range of 1 to 10 mg L-1 using a 24h batch equilibration experiment. Desorption of Cd(II) was studied with the clay samples initially treated with the metal loadings of 50 and 100% maximum sorption capacity (SCmax) during the sorption study. Sorption isotherms of Cd were well described by the Freundlich and Coble-Korrigan models (R2=0.96). Desorption isotherms of Cd from zeolite showed little deviation from sorption data indicating reversible sorption. On the other hand, the results revealed no hysteresis. The average amount of 71.75 % of the initially sorbed Cd was desorbed from zeolite after five successive desorption steps. Release of such a relatively high proportion of sorbed Cd indicates that zeolite is an effective sorbent for the repeated purification of polluted water and wastewater.


S. Shahmoradi, M. Afyuni, M. A. Hajabbasi, A. H. Khoshgoftarmanesh, M. Shirvani,
Volume 19, Issue 71 (spring 2015)
Abstract

In this work, the effect of raw and modified bentonite and zeolite with trivalent iron on the stabilization of water-soluble and adsorbed arsenic in a calcareous soil was studied. Raw and modified bentonite and zeolite were added to the soil in different weights in a completely randomized block design with three replications and kept to field capacity soil moisture content of 80% for 8 weeks. The concentrations of water-soluble and adsorbed arsenic, water-soluble and absorbed phosphorus in soil and soil pH were measured. Treatments significantly affected the mobility of arsenic and phosphorus in soil. Raw zeolite and bentonite in different levels increased arsenic mobility (about 107 to 325 % and 259 to 350% respectively). Despite the change in surface properties of zeolites modified with iron, this treatment at different levels increased arsenic mobility in soils by about 124 to 246%. Bentonite modified with iron had the greatest effect on reducing arsenic mobility in soil (about 91%). Phosphate mobility was similar to arsenic in different treatments.


V. Moradinasab, M. Shirvani, M. Shamsaee, M. R. Babaee,
Volume 19, Issue 74 (Winter 2016)
Abstract

Mobarakeh Steel Complex has been using treated industrial wastewater for irrigation of green space to combat water shortage and prevent environmental pollution. This study was performed to assess the impact of short-, middle-, and long-term wastewater irrigation on soil quality attributes in green space of this complex. Soils were sampled from the wet bulb produced by under-tree trickles in three depths of forested lands irrigated with treated wastewater (for 2, 6 and 18 years) or groundwater. Several chemical, physical and biological characteristics of the soil samples were determined in the laboratory and compared to those of the native unirrigated soils as the controls. The results showed that pH was significantly reduced in the wastewater-irrigated soils as compared to the control. Organic matter content and cation exchange capacity significantly increased in the irrigated soils due to the incorporation of tree leaves into soil. Soil salinity also increased as the irrigation period increased because of the relatively high salinity of water and wastewater used for irrigation. Microbial basal respiration and arginine ammonification were greater in the irrigated soils in comparison to the control. In general, forestation and irrigation management have improved most of the soil quality indexes in the Mobarakeh Steel Complex green space, but some soil characteristics, such as salinity, need to be monitored and improved in future.


Msc S. Shahmoradi, Dr M. Afyuni, Dr M. Hajabbasi, Dr A. H. Khoshgoftarmanesh, Dr M. Shirvani,
Volume 21, Issue 2 (Summer 2017)
Abstract

During last century, waste water of gold mine has accumulated heavy metals such as lead, zinc and cadmium in Zarshuran region soil, and thus has increased epidemic disease in this region drastically. The purpose of this research was to reduce the mobility and bioavailability of zinc, lead and cadmium in rhizosphere of sunflower grown in soil around the mine by inorganic sorbents. A pot experiments was carried out with three levels of raw zeolites (1, 6, 12 wt%), three levels of raw bentonite (1, 6, 12 wt%) and control (without sorbent) in a completely randomized block design with three replications. After cultivation, soil and plant samples were taken and the concentration of lead, cadmium and zinc in their samples were measured. Different levels of bentonite reduced the absorbable concentration of lead and zinc; and also reduced their absorbable concentrations in plant tissue, but had no significant effect on reducing absorbable concentration of cadmium.  Transfer factor for all three metals in the roots was more than shoot and reducing the concentration of heavy metals in the plant had no impact on plant growth. According to the study, level of 12 wt% of the raw bentonite was the most suitable sorbent for the stabilization of lead and zinc; and level of 12 wt% for raw zeolite was the best sorbent for stabilization of cadmium.

F. Masoudi, M. Shirvani,
Volume 21, Issue 4 (Winter 2018)
Abstract

Water and soil pollution with heavy metals has become a worldwide environmental issue. Therefore, development of efficient and low-cost methods for removal of metals from water or metal stabilization in soil has been identified as priority research areas. Biochar, produced from plant biomass and agricultural wastes, has recently been used to remove heavy metals from aqueous solutions as an effective sorbent. In this study, biochars were made from pyrolysis of palm tree residues at different temperatures of 200, 400 and 600 °C. The prepared biochars were then used to remove Ni from aqueous solutions in batch systems without pH adjustment and with pH adjustment at 7. To investigate Ni sorption rate, kinetic experiments were also carried out at a Ni concentration of 10 mg/L. The results of kinetic tests showed that the biochar prepared at 600 °C had more Ni sorption rate with equilibration time of about 5 h. Power function and Elovich models were the best equations fitted the kinetic data. Langmuir and Freundlich isotherms described sorption of Ni on the sorbents very well. According to the Langmuir model predictions, the biochar produced at 600 °C and the palm raw residues had highest and the lowest capacity to sorb Ni from the solution, respectively, and the biochars produced at 200°C and 400°C were intermediate in this respect. Both the capacity and affinity of the biochars for Ni sorption increased with pH. Overall, under the experimental conditions applied in this study, the biochar prepared at 600 °C showed the highest efficiency for Ni removal from aqueous solution.

H. Shirani, S. Shirvani, M. Moradie,
Volume 22, Issue 2 (Summer 2018)
Abstract

In recent years, microbial contamination of surface and groundwater is a serious problem in some countries, leading to dangerous diseases. Soil salinity and irrigation water can affect the amount of transport or survival of bacteria in soil. In this study, the effect of different levels of salinity of irrigation water with EC: 0.5, 2.5, 6 ds/m and three manures including poultry manure, cow manure and the mixture of poultry and cow manure with 10 ton ha-1 on the transport of Escherchia coli was investigated in disturbed soil columns with 30cm height and 10cm diameter under unsteady-state water conditions. The concentration of Escherchia coli was measured. The severity of the effluent contamination of the treated columns with water salinity was 6 ds/m, which was less than that with the salinity of 2.5 and 0.5 ds/m. This difference was significant at the 0.01 probability level. Also, the effluent contamination of poultry manure-treated columns was greater than the cow manure and the mixed manure, and the contamination of mixed manure was greater than that of cow manure. The interaction of different salinity treatments on the concentration of Escherchia coli in different fertilizer treatments was significant at the 0.01 probability level. The results showed that the concentration of the released bacteria was affected by irrigation water salinity and with increasing the salinity, the concentration of the bacteria was reduced.

N. Zough, M. Shirvani,
Volume 22, Issue 4 (Winter 2019)
Abstract

Alginate biopolymer, due to possessing a high capacity and affinity for heavy metals, is a suitable material for the removal of metals from polluted waters; however, the weak structural consistency of alginate hydogels limits the practical application of this natural polymer in water purification practices. In this study, sepiolite clay mineral was used as a solidifier of alginate hydrogel to produce hybrid materials with different clay:alginate ratios (1:2, 1:4 and 1:8). Subsequently, the sorption of Pb by the prepared hybrid materials was studied in different Pb concentrations (25 to
2000 mg/L) and temperatures (15, 25, 35 and 45 °C). The results showed that the Langmuir and freundlich equations could significantly describe Pb sorption data on the sorbents. Based on the Langmuir model estimation, alginate showed and sepiolite showed the highest and lowest capacities for Pb sorption, respectively; also, the hybrids were intermediates in this respect. The capacity and affinity of all sorbents were enhanced with increasing the temperature from 15 to 45 °C. Standard enthalpy changes (ΔH°) were found to be positive, confirming that the process of Pb sorption on the sorbents was endothermic. Positive values were also obtained for the standard entropy changes (ΔS°), suggesting increased randomness at the solid-solution interface during the sorption of Pb ions on the sorbents. The values of the standard free energy change (ΔG°) were negative for all different temperatures, thereby indicating that sorption on the sorbents was spontaneous and favorable. Overall, it could be concluded that modification of alginate with sepiolite might cause the decreased sorption capacity of alginate; however, the hybrid materials are good candidates for the Pb removal from aqueous solutions because of their high sorption capacities.

R. Soltani, M. R. Mosaddeghi, M. Ayuni, Sh. Ayoubi, M. Shirvani,
Volume 23, Issue 1 (Spring 2019)
Abstract

Long-term use of treated wastewaters for irrigation adds compounds and/or ions to soils which might alter the soil physical, hydraulic and mechanical properties. Soil mechanical properties are closely linked with the plant growth. This study was conducted to investigate the effect of short-, mid- and long-term applications of the treated wastewater of Mobarake Steel Company in Isfahan on the soil penetration resistance and shear strength in the company green space. Soil penetration resistance and shear strength were measured using a pocket penetrometer and in situ shear box, respectively. The results showed that soil penetration resistance (i.e. soil hardness) at both dry and wet conditions significantly was increased upon short-, mid- and long-term applications of wastewater; 19 years of the application of wastewater resulted in the highest soil penetration resistance at wet condition, but the well water did not significantly affect it. Surface crust in the non-irrigated locations increased the soil penetration resistance, but the irrigated sealed soils were not significantly different from the virgin soil in terms of dry and wet penetration resistances. For the soil shear strength parameters, wastewater, well water and surface crust did not significantly affect soil cohesion (c), they but significantly affected the angle of internal friction (φ). Overall, soil shear strength parameters were not greatly affected by the irrigation water treatments because of the dominant effect of the soil fractions (texture and gravel content) and the microstructure.

M. Khamseh Mahabadi, M. Shirvani, M. R. Mosaddeghi,
Volume 24, Issue 1 (Spring 2020)
Abstract

Shortage of water resources and deterioration of water quality have urged the need to develop new technologies for the removal of contaminants from water. Heavy metals produced by municipal and industrial activities are among the most toxic contaminants present in the natural and waste waters. Different methods have been developed for the elimination of heavy metals from water resources and industrial waste waters. Adsorption is an effective and economic method for the water purification purposes. Nowadays, clays and natural polymers have been widely used as the adsorbents for heavy metals, due to their eco-friendly nature, natural abundance, low cost and high specific surface area. If these adsorbents are used as a hybrid material, some of their physical and chemical restrictions would be alleviated. In this study, polyacrylic acid–bentonite hybrids and natural bentonite were compared in terms of Pb adsorption in the batch and fixed-bed column systems. Besides, the effect of pH on Pb retention was investigated in both systems. The results of the batch studies showed that Langmuir and Freundlich isotherm models were appropriate in ing quilibrium Pb sorption data. Pb sorption by the sorbents was increased with the rise in solution of pH from 4 to 6, showing the greatest Pb sorption capacity at pH values of 4 (83.29 mg g-1) and 6 (103.3 mg g-1). Different indices of filtration and adsorption, including average relative effluent concentration, relative adsorption index, relative transmitted index, and filtration coefficient, were calculated from the break-through curves, indicating that the polyacrylic acid-bentonite nanocomposite was superior in the Pb sorbtion, as compared to bentonite. Also, a higher pH value resulted in the greater Pb removal from the solutions.  

I. Hasanpour, M. Shirvani, M.a. Hajabbasi, M.m. Majidi,
Volume 26, Issue 2 (ُSummer 2022)
Abstract

Low organic matter content and alkaline pH of calcareous soils in arid and semi-arid regions are the main reasons for the low nutrient availabilities for plants in these soils. One way to improve the chemical properties and fertility of calcareous soils is the application of organic substances such as biochar produced from pyrolysis of organic wastes. However, biochars have an almost predominant alkaline pH, which exacerbates plant nutrient deficiencies in calcareous soils when used for a long time. Pyrolysis of some organic wastes under controlled temperature conditions can lead to the production of acidic biochar. The effect of acidic biochars on several chemical properties of two calcareous soils in Isfahan province was investigated in the present study. Treatments included two types of biochar (pine cone and rice husk), three levels of biochar addition (one, three, and six percent), two types of soil (a sandy loam (Tiran) and a clay loam (Lavark)), and two incubation periods (one and six months). The results showed that applying biochar could slightly decrease soil pH but raised soil electrical conductivity. In addition, the amount of organic carbon, total nitrogen, and available concentration of manganese in all treatments and the concentrations of available phosphorus, potassium, iron, zinc, and copper in the most of treatments showed a significant increase compared to the control. Amending soil with biochar at a 6% rate caused the most significant changes in the measured parameters in both soil types. In general, the results of this study indicated that acidic biochar produced from pine cones and rice husk can be used as a suitable conditioner to improve the chemical properties and fertility of calcareous soils.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb