Search published articles


Showing 6 results for zarif

A. Rahimi Khoob, S.m.r Behbahani , M.h. Nazarifar,
Volume 11, Issue 42 (winter 2008)
Abstract

  Air temperature prediction models using satellite data are based on two variables of land surface temperature and vegetation cover index. These variables are obtained by atmospheric corrections in the values for the above data. Water vapor, ozone, and atmospheric aerosol optical depth are required for the atmospheric correction of visible bands. However, no measurements are available for these parameters in most locations of Iran. Using the common methods, land surface temperature can be measured accurately at 2 ° C. Given these limitations, efforts are made in this study to evaluate the accuracy of predicting maximum air temperature when uncorrected atmospheric data from the NOAA Satellite are used by a neural network. For this purpose, various neural network models were constructed from different combinations of data from 4 bands of NOAA satellite and 3 different geographical variables as inputs to the model in order to select the best model. The results showed that the best neural network was the one consisting of 6 neurons as the input layer (including 4 bands of NOAA satellite, day of the year, and altitude) and 19 neurons in the hidden layer. In this structure, about 91.4% of the results were found to be accurate at 3 ° C and the statistical criteria of R2, RMSE, and MBE were found to be 0.62, 1.7 ° C, and -0.01 ° C, respectively.


M. H.nazarifar, R. Momeni,
Volume 15, Issue 56 (sumer 2011)
Abstract

Deficit irrigation is one of the strategies used to obtain products with maximum profits in recent years. In this context, research on determining appropriate levels of deficit irrigation is essential. Since determining the different levels of performance through field experiments is difficult, the use of simulation models is a strategy through which we can examine the water balance data, simulate the growth process, and to study different managerial scenarios. The purpose of this study was validation and evaluation of CropSyst, a plant growth model, to determine suitable cropping patterns in deficit irrigation conditions. Applying three deficit irrigation scenarios in model, with values of 10%, 20% and 30% on six crops, fava bean, bean, wheat, potato, sunflower and rice, we concluded that the applied deficit irrigation of 10% to bean, potato and beans, 20% to sunflower and 30% to wheat had been suitable, and it is better not to apply deficit irrigation in rice. Also, since in final selection, the rate of water productivity is one of the basic criteria in each crop mentioned above, determining net benefit based on drop index (NBPD) per cubic meter showed that the most NBPD is related to bean with 6853 Rials per cubic meters and the lowest amount is related to sunflower with a value equal to 2809 Rials per cubic meters.
A. Rahimikhoob, P. Saberi, S. M. Behbahani, M. H. Nazarifar,
Volume 15, Issue 56 (sumer 2011)
Abstract

In this study, the remote sensing statistical approach was used to determine the global solar radiation from NOAA-AVHRR satellite data in southeast of Tehran. This approach is based on the linear correlation between a satellite derived cloud index and the atmospheric transmission measured by the clearness index on the ground. A multiple linear regression model was also used to convert the five AVHRR data channels and extraterrestrial radiation to global solar radiation. The results of this study showed that multiple linear regression model estimated the solar radiation with an R2 of 0.93 and a root mean square error (RMSE) of 5.8 percent, which was better than the statistical approach.
H. Karimi Avargani, A. Rahimikhoob, M. H. Nazarifar,
Volume 23, Issue 3 (Fall 2019)
Abstract

In recent years, a lot of research has been done on the Aquacrop model, the results show that this model simulates the product performance for deficit irrigation conditions. But this model, like other models, is sensitive to values of independent variables (model inputs). In this research, the sensitivity of the Aquacrop model was analyzed for 4 input parameters of reference evapotranspiration, normalized water productivity, initial canopy cover percentage and maximum canopy cover for barley. Irrigation treatments included full irrigation and two deficit irrigation treatments of 80% and 60%, the experiment was done in 2014-15 growing season in the field of Abourihan College. The values of measured biomass were used as the base values for treatments. The Beven’s method (Beven et al., 1979) was used for sensitivity analysis of Aquacrop model. The results showed that the model is most sensitive to the reference crop evapotranspiration, So the sensitivity coefficient for this parameter for full irrigation treatments, 80% full irrigation and 60% full irrigation were -1.1, -1.2 and -2.3 respectively. The negative sign indicates that if the value of reference evapotranspiration input is exceeded the actual value into the model, Yield performance is simulated less than actual value. In the meantime, the higher the degree of deficit irrigation, the greater the sensitivity of the model.

F. Zarif, A. Asareh, M. Asadiloor, H. Fathian, D. Khodadadi Dehkordi,
Volume 26, Issue 2 (ُSummer 2022)
Abstract

An accurate and reliable prediction of groundwater level in a region is very important for sustainable use and management of water resources. In this study, the generalized feedforward (GFF) and radial basis function (RBF) of artificial neural networks (ANNs) have been evaluated for monthly predicting groundwater levels in the Dezful-Andimeshk plain in southwestern Iran. The partial mutual information (PMI) algorithm was used to determine efficient input variables in ANNs. The results of using the PMI algorithm showed that efficient input variables for monthly predicting groundwater level for piezometers affected by water discharge and recharge include only water level in the current month. Also, efficient input variables for predicting the water level for piezometers affected only by water discharge include the water level in the current month, the water level in the previous month, the water level in the previous two months, transverse coordinates of piezometers to UTM, the water level in the previous three months, the water level in the previous four months, the water level in the previous five months and longitudinal coordinates of piezometers to UTM. In addition, efficient input variables of monthly predicting groundwater level for piezometers neither affected by water discharge nor water recharge, respectively, include the water level in the current month, the water level in the previous month, the water level in the previous two months, the water level in the previous three months, the water level in the previous four months, the water level in the previous five months, the water level in the previous six months, transverse coordinates of piezometer to UTM and longitudinal coordinates of piezometer to UTM. The results indicated that the GFF network is more accurate than the RBF network for monthly predicting groundwater level for piezometers including water discharge and recharge and piezometers including only water discharge. Also, the RBF network is more accurate for monthly predicting groundwater levels for piezometers that include neither water discharge nor recharge than the GFF network.

A.r. Vaezi, S. Rezaeipour, M. Babaakbari, F. Azarifam,
Volume 27, Issue 3 (Fall 2023)
Abstract

Improving soil physical properties and increasing water retention in the soil are management strategies in soil and water conservation and enhancing crop yield in rainfed lands. This study was conducted to investigate the role of tillage direction and wheat stubble mulch level in improving soil physical properties in rainfed land in Zanjan province. A field experiment was done at two tillage directions: up to the downslope and contour line, and five stubble mulch levels: zero, 25, 50, 75, and 100% of land cover equal to 6 tons per hectare. A total of 30 plots (2 m×5 m) were created. The results indicated that water infiltration and water content were considerably affected by tillage direction, whereas its effect on water holding capacity was not significant. This physical property of the soil was influenced by the inherent properties of the soil, including particle size distribution. The change of up to down tillage direction to the contour line increased soil infiltration to 11% and water content to 6%. The physical soil properties were wholly influenced by mulch consumption. Soil water content increased in mulch treatments along with water holding capacity and infiltration rate. The highest volumetric water content was at 100% mulch level (10.62%) which was 11% more than the control treatment. However, there was no significant difference between 100% and 75% mulch treatment. This revealed that the application of 75% stubble mulch in contouring tillage is a substantial strategy for improving soil physical properties and controlling water loss in rainfed lands of semi-arid regions.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb