Search published articles


Showing 26 results for Optimization

S. Azizpour, P. Fathi, K. Nobakht-Vakili,
Volume 16, Issue 60 (7-2012)
Abstract

Soil saturated hydraulic conductivity (k) and effective porosity (f) are the most important parameters to simulate the processes associated with irrigation, drainage, hydrology, leaching and other agricultural and hydrological processes. Present methods to measure these parameters are often difficult, time consuming and costly. Therefore, a method which provides more accurate estimates of these parameters is essential and is considered inevitable. The purpose of this study was simultaneous estimation of k and f using approach inverse problem. In this study, analytical drainage model of Glover-Dam was used to simulate the inverse problem method. Also, genetic algorithm was used as an optimization technique for determination of optimal values of k and f. In order to measure the data required for calibration and evaluation of the proposed inverse problem model, a physical model was designed and constructed in the laboratory. The results showed that the proposed method is good for simultaneosly estimating simultaneous soil k and f. Also with variable f assumption, the prediction error of water table around the drainage was reduced significantly.
M. Navabian, M. Aghajani,
Volume 16, Issue 60 (7-2012)
Abstract

In Guilan province, Sefidrud River, as the main source of irrigating rice in Guilan province, has been subjected to increasing salinity and a decreasing discharge because of decreasing in the volume of sefidrud dam, diverting water upstream and entering different sewages into the river. This research tries to determine optimum irrigation depth and intermittent periods in proportion to salinity resistance at different growth stages using optimization- simulation model. After calibration, Agro-hydrological SWAP model was used to simulate different growth stages of rice. Optimization results were obtained for managing fresh and saline intermittent water, 8-day intermittent period, for salinity of 0.747 dS/m in sensitive maturity stage and salinity of 3.36 dS/m in resistant vegetative, tiller and harvest growth stages. It is suggested that the depth of irrigation water be 1, 3, 3 and 5 cm for vegetative, tiller, maturity and harvest stages, respectively. Comparing managements of irrigation and saline based on the resistance of different growth stages to salinity and exploitation of irrigating water with a constant salinity during growth periods of the plant showed that irrigation management based on resistance of different growth periods of the plant to salinity causes rice yield to be improved by 23percent.
D. Rajabi, H. Karami, Kh. Hosseini, S. F. Mousavi , S. A. Hashemi,
Volume 19, Issue 73 (11-2015)
Abstract

Non-linear Muskingum model is an efficient method for flood routing. However, the efficiency of this method is influenced by three applied parameters. Therefore, efficiency assessment of Imperialist Competition Algorithm (ICA) to evaluate optimum parameters of non-linear Muskingum model was addressed in this study. In addition to ICA, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) were also used to find an available criterion to verify ICA. In this regard, ICA was applied for Wilson flood routing then, routing of two flood events of DoAab Samsami River was investigated. In case of Wilson flood, the target function was considered as the sum of squared deviation (SSQ) of observed and calculated dischargem. Routing two other floods, in addition to SSQ, another target function was also considered as the sum of absolute deviations of observed and calculated discharge. For the first floodwater based on SSQ, GA indicated the best performance however, ICA was in the first place, based on SAD. For the second floodwater, based on both target functions, ICA indicated a better operation. According to the obtained results, it can be said that ICA could be recommended as an appropriate method to evaluate the parameters of Muskingum non-linear model.


S.a. Mohseni Movahed, M. Koochakzadeh, P. Salehimoghadam,
Volume 21, Issue 3 (11-2017)
Abstract

Basin irrigation is one of the conventional surface irrigation methods used to irrigate many crops all over the world. EDOBASIN, a new mathematical model for evaluation, design and optimal operation of basin irrigation has been introduced in this paper. In this model the linear combination of desired efficiencies are considered in an objective function, and based on decision variables that include discharge, length and width of basin and also restrictions of parameters, the optimal design is performed. This model is a simulation-optimization model in which the volume balance equations are used for hydrodynamic simulation and SA method are used for optimization steps. Optimization capabilities with various decision options and allowing weights to the indicators are good characteristics of this model. Comparison of advance time in this model with the well-known model SIRMOD for a real condition showed a good accuracy in the evaluation phase. In addition, the significant improvement of efficiencies after optimizing them simultaneously indicate that the model is an efficient tool for optimal design and use of this model for a data plot of an experimental field could enhance the efficiency of deep percolation ratio and application efficiency to 20% and keep constant the level of 100% for the efficiencies of water requirement and distribution uniformity.
 

M. A. Geranmehr, M. R. Chamani, K. Asghari,
Volume 22, Issue 3 (11-2018)
Abstract

A water distribution network (WDN) may not be able to satisfy all required demands when it’s in the pressure deficit mode or under over-loaded demand conditions. Analysis of the network in this mode requires pressure dependent analysis (PDA). Unlike demand driven analysis (DDA), PDA needs an extra equation for every node to relate the nodal demand and the nodal pressure; so it should be solved with the other network’s equations simultaneously. In this paper, based on the Particle Swarm Optimization (PSO) algorithm, a decision support system has been developed by using MATLAB and EPANET for PDA simulation in WDNs. A four-loop network selected from the literature was analyzed using different scenarios and different pressure dependent functions presented by the previous investigations. The results showed that the proposed model (PSO-PDA) was as accurate as the previous ones and provided better convergence. The results of the nodes’ pressure and discharge also indicated minor differences obtained by different PDA functions. However, the differences between the results of PDA and DDA were considerable.

S. Chavoshi,
Volume 22, Issue 4 (3-2019)
Abstract

Regional flood frequency studies are initialized by the delineation of the homogeneous catchments. This study was based on "Region of Influence" concept, aiming to find the similar catchments in the south of Caspian Sea. The methodology utilized the Particle Swarm Optimization Algorithm, PSO, to optimize the fuzzy system over a dataset of catchment properties. The main catchment variables in relation to flood were determined by the principle component analysis method and employed as the inputs in the fuzzy system. Catchments grouping was performed over these fuzzy input variables by the iterative process. The optimum similar groups were obtained by PSO, and the heterogeneous L-moment index was used as the termination criterion for the optimization process. A total of 61 hydrometric stations located in the study area were selected and their relevant catchments' physical, climatic and hydrologic properties in relation to flood were studied. Principle Component Analysis by Variomax Rotation Factor over the catchments datasets tended to four out of 16 physical variables, including area, mean elevation, Gravelious Factor and Form Factor, as the main parameters in terms of homogeneity with 84 percent of accumulative variance. These variables, as well as mean annual rainfall, were used as the input data to define the fuzzy system. PSO algorithm was then employed to optimize the developed fuzzy system. The developed algorithm tended to yield the best result in the 9th iteration with 26 and 22 for the minimum average and the optimum values of cost function, respectively. The topology of the resulting algorithm included inertia weight, local and acceleration rates, the number of generations and population size, with the values of 0.7298, 1.4962, 1.4962, 10 and 5, respectively. This study tended to a total of 61 regions of influence, proportional to the relevant 61 sites. According to the geographical location of the catchments in the region, it could be concluded that the geographical proximity doesn't necessarily involve homogeneity. The obtained results indicated the efficient potential of PSO-FES in the delineation of the homogenous catchments in the study area.

B. Raheli Namain, S. Mortazavi, A. Salman Mahini,
Volume 23, Issue 2 (9-2019)
Abstract

Agriculture production with high quality and adequate income for farmers and the least harmful effects in environment are the main objectives of agriculture optimization. The main objective of this study was ranking, optimization and land allocation of Gonbadkavoos’s Drylands for strategic products such as wheat, barley, oilseed rape‎ and soybean under environment and socio-economic scenarios. Because the available information on fertilizer and pesticide consumption was not sufficient and reliable, this data was collected through face-to-face interviews with farmers. The results showed that some slightly and moderately hazardous pesticides were consumed in study area. In this study, the optimized combination of agriculture products was applied by using the modeling approach and considering environmental and socio-economic aspects in Gonbadkavoos County.‎ This approach uses MCAT software, which is based on multi-criteria techniques and metaheuristic algorithms. The results of the environmental scenario‎ show‎ ed that barley, oilseed rape‎ and soybean, with little difference,‎ had the highest benefit-to-cost ratio and profitability, respectively. The slight difference could be related to the use of fertilizers and pesticides. In the socio-economic scenario, oilseed rape, wheat and barley had the highest benefit-to-cost ratio and land allocation, respectively. The represented approach using the decision support system (MCAT) can help planners to design optimal cropping systems and aid good management of fertilizers and water consumption.

N. Ganji Khorramdel, M. Abdoos, S. M. Hoseini Mooghaari,
Volume 23, Issue 3 (12-2019)
Abstract

Due to water use increasing, attention to optimal water resources allocation is needed. In recent decades, the use of intelligent evolutionary methods for optimization of water allocation was focused more by researchers. The aim of this study is to development on water resources planning model that determined the proper cultivation, optimal exploitation of groundwater and surface water resources although water allocation among crops is a way to minimize the adverse effects of dehydration and increase its revenue. In this study, for maximizing profits, estimating crop water requirements at different periods to optimize the management of cropping patterns and irrigation management in cultivation in Varamin irrigation network using a new evolutionary algorithm was called the water cycle. Then for validation of this method is that a new approach and ensure the integrity of its performance Its results are compared with a genetic algorithm model and linear programming as our base (R2=0.9963). The results showed that the area cropping pattern was not optimal and the area under cultivation of crops such as wheat, barley, tomatoes, Bamjan, melon, alfalfa reaches zero and the new paradigm of the largest area under cultivation to industrial goods and then was assigned cucumbers. While our revenues have increased about 11 percent. In addition to amount of water in different months remain in the network that can be used for many that such as injection into underground aquifers or other crops based on the amount of water available.

M. J. Asadi, S. Shabanlou, M. Najarchi, M. M. Najafizadeh,
Volume 23, Issue 3 (12-2019)
Abstract

In this study, the discharge coefficient of the circular side orifices was predicted using a new hybrid method. Combinations made in this study were divided into two sections: 1) the combination of two algorithms including Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) and providing the PSOGA algorithm 2) using the PSOGA algorithm in order to optimize the Adaptive Neuro Fuzzy Inference Systems (ANFIS) network and providing the ANFIS-PSOGA method. Next, by identifying the parameters affecting on the discharge coefficient of the circular side orifices, 11 different combinations were provided. Then, the sensitivity analysis conducted by ANFIS showed that the Froude number and the ratio of the flow depth to the orifice diameter (Ym/D) were identified as the most effective parameters in modeling the discharge coefficient. Also, the best combination including the Froude number (Fr), the ratio of the main channel width to the side orifice diameter (B/D), the ratio of the orifice crest height to its diameter (W/D) and the ratio of the flow depth to the orifice diameter (Ym/D) for estimating the discharge coefficient was introduced. For this model, the values of Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) and correlation coefficient (R) were obtained 0.021, 0.020 and 0.871, respectively. Additionally, the performance of the ANFIS-PSOGA method was compared with the ANFIS-PSO and ANFIS methods. The results showed that the ANFIS-PSOGA method for predicting the discharge coefficient was the superior model

A. Kheyrandish, S. F. Mousavi, H. R. Ghafouri, S. Farzin,
Volume 23, Issue 4 (12-2019)
Abstract

In this research, conjunctive and integrated operation of surface and ground water resources of Behbahan plain (Maroon dam's reservoir and existing wells, respectively) was investigated. Simulation of allocation of water demands in this basin was performed by four scenarios, using WEAP software: 1) current conditions (M1), 2) reference scenario for the next 16 years (M2), 3) land development scenario (M3), and 4) optimal scenario (M4). The optimal scenario was performed with multi-purpose linear programming. Based on the results, drinking water demands was satisfied completely in all scenarios. Under the scenario of current conditions, all agricultural demands, except the traditional rights, supplied more than 50% in the low-flow months. In the reference scenario, water supply for agricultural demands in some months was less than 100% and even in June and July, the water supply for North and South Irrigation networks of Behbehan plain was less than 10%. In the land development scenario, agricultural demands of all irrigation networks, except Ramhormoz network, satisfied more than 90% in all months. The optimal scenario performed better than other scenarios for minimum Maroon River flow and volume of storage in the reservoir. Comparison of the four scenarios in satisfying the environmental needs also revealed that the optimal scenario performed better than the other three scenarios in the spring months. However, it provided less than 100% of water needs in the whole year. Comparison of the four scenarios also showed that the first two scenarios had the highest reliability percent in the Jayzan-Fajr, South Behbahan and North Behbahan Irrigation Networks and traditional water rights. Frequency of storage-time-probability from the storage volume in the optimal scenario also showed that maximum storage lifetime of the lasting storage volume was 558 million m3 (which was equal to half of the volume of Maroon dam’s reservoir) with the highest probability (60%).

A. Atarodi, H. Karami, A. Ardeshir, Kh. Hosseini,
Volume 24, Issue 1 (5-2020)
Abstract

In general, engineering designs need to optimize the factors affecting the under-study phenomenon; however, this is often a costly and time-consuming process. In this regard, new methods have been developed to optimize with fewer tests; thus, they can make the whole process more affordable. In this study, Taguchi and Taguchi-GRA methods were used to design the geometric parameters of the protective spur dike in order to optimize their efficiency in reducing the scouring in a series of spur dikes. The results of both methods showed the optimal ratio of the length of the protective spur dike to the length of the first spur dike was 2.5 and the angle of the protective spur dike was 90 °. However, the ratio of the length of the protective spur dike to the length of the main spur dike in the Taguchi method was 0.8 and in the Taguchi-GRA method, it was 0.6. In addition, using variance analysis showed that the distance between the protective spur dike from the first spur dike, the protective spur dike angle, and the length of the protective spur dike were, respectively, the most effective on the performance of the protective spur dike. The results of this study, therefore, indicate that both methods are highly effective in optimization and, therefore, can be useful in the hydraulic engineer studies.

M. M. Fallahi, B. Yaghoubi, F. Yosevfand, S. Shabanlou,
Volume 24, Issue 3 (11-2020)
Abstract

Rainfall may be considered as the most important source of drinking water and watering land in different areas all over the world. Therefore, simulation and estimation of the hydrological phenomenon is of paramount importance. In this study, for the first time, the long-term rainfall in Rasht city was simulated using an optimum hybrid artificial intelligence (AI) model over a 62 year period from 1956 to 2017. The gene expression programming (GEP) and wavelet transform (WT) were combined to develop the hybrid AI model (WGEP). Firstly, the most effective lags of time series data were identified by means of the autocorrelation function (ACF); then eight various GEP and WGEP models were defined. Next, the GEP models were analyzed and the superior GEP model as well as the most influenced lags was detected. For instance, the variance accounting for (VAF), correlation coefficient (R) and scatter index (SI) for the superior GEP model was calculated to be 0.765, 0.508 and 0.709, respectively. Additionally, lags (t-1), (t-2), (t-3) and (t-12) were the most influenced. Then, the different mother wavelets were examined, indicating that the demy mother wavelet was the most optimal one. Moreover, analyzing the numerical simulations showed that the mother wavelet enhanced the performance of the GEP model significantly. For example, the VAF index for the superior WGEP model was increased almost three times after using the mother wavelet. Furthermore, the R and MARE statistical indices for the WGEP model were computed to be 0.935 and 0.862, respectively.

H. Alizadeh, A. Hoseini, M. Soltani,
Volume 24, Issue 3 (11-2020)
Abstract

The construction of irrigation network and the water transfer from Karkheh Dam to Dashte-Abbas, due to neglecting the groundwater resources has increased groundwater level and waterlogging of the agricultural land in the recent years. The aim of this study was, therefore, to optimize the conjunctive use of surface and groundwater resources in Dashte-Abbas to minimize waterlogging problems and achieve the maximum net income. For this purpose, the behavior of groundwater was simulated using the system dynamics (SD) approach. The conjunctive use of surface and groundwater resources was then optimized using the Vensim multi-criteria optimization method with the objective function of maximizing the net income of the plain. The SD model calibration was done using climatic, hydrological, agricultural, and environmental data from the 2001-2009 time period; then it was validated based on the information from the 2009-2016 period. Evaluation of the developed SD model showed that the model had high accuracy in simulating key variables such as groundwater levels (ME=60cm, R2=97%, RMSE=47cm) and groundwater salinity (RMSE=100μS/cm, R2=74%, and ME=123μS/cm). Furthermore, the results of the optimization model showed that the optimum use of surface and groundwater resources for the agricultural demand was 65% and 35%, respectively. To sum up, it could be concluded that with the optimization of the conjunctive use of surface and groundwater resource, s about 10 MCM of water consumption could be annually saved to irrigate almost 800 ha of the new lands.

M. Fuladipanah, M. Majediasl,
Volume 24, Issue 4 (2-2021)
Abstract

The prediction of local scouring as a dynamic and nonlinear phenomenon using methods of acceptable predictive capability has always been of interest to researchers. The shape of the bridge pier is one of the important factors in the formation and magnitude of the scour hole. In this paper, the scour depth of three bridge piers with cylindrical, sharp nose and rectangular shapes was predicted in two scenarios using the support vector machine algorithm with 395 field data obtained from the US Geological Survey and Froehlich (1988), based on different combinations of dimensionless parameters as the water attack angle (α), Froud number (Fr), the ration of pier length to width (l/b), and the ratio of mean sediment size to pier width (D50/b). The results of the study, while confirming the acceptable performance of the SVM algorithm for all piers in both scenarios, showed that in the first and second scenarios, the most optimal performance was related to the rectangular pier shape with correlation coefficient of 0.8702 and 0.8838, with and maximum Ds (DDR) values of 0.854 and 1.229 respectively, during the testing phase. The positive effect of increasing the number of data on the performance of the SVM algorithm was also confirmed by further probing the evaluation indicators. The results of the comparison pointed out the overestimation of the predicted scour depth values of absolute error between 11% to 35%.

M. Akbari,
Volume 24, Issue 4 (2-2021)
Abstract

The objective of this research was the development of a hydraulic-economic simulation-optimization model for the design of basin irrigation. This model performed hydraulic simulation (design of basin irrigation), using Volume Balance model, economic simulation through calculating sum of four seasonal costs and optimization using NSGAII multi-objective meta-heuristic algorithm. For programming, MATLAB programming software was applied. The optimizations of functional, multi-dimensional, static, constraint, continuous, multi-objective and meta-heuristic were applied for the optimization of the objective functions. Decision variables selected from simulation inputs were calculated in such a way that the  hydraulic objective function (minimizing linear combination of seven performance indicators) and economic objective function (total seasonal cost based on sum of water cost, labor cost, basin preparing cost and channel drilling cost) were minimized. Data of one the experimental field was used for the purpose of simulation. After initial simulation, optimization of the experimental field was done using NSGAII multi-objective meta-heuristic algorithm with tuned parameters. Optimization using the suggested model shoed the decrease (improvement) of objective functions rather than initial simulation performance. As a result, the suggested model could be regarded as is a specialized tool for basin irrigation, showing a good performance, despite its simplicity.

E. Yarmohammadi, S. Shabanlou, A. Rajabi,
Volume 25, Issue 1 (5-2021)
Abstract

Optimization of artificial intelligence (AI) models is a significant issue because it enhances the performance and flexibility of the numerical models. In this study, scour depth around bridge abutments with different shapes was estimated by means of ANFIS and ANFIS-Genetic Algorithm. In other words, the membership functions of the ANFIS model were optimized using the genetic algorithm, finding that the performance of ANFIS model was increased. Firstly, effective input parameters on the scour depth around bridge abutments were defined. Then, by using the input parameters, eleven ANFIS and ANFIS-GA models were produced. Next, the superior ANFIS and ANFIS-GA models were introduced by analyzing the numerical results. For example, the correlation coefficient and scatter index for ANFIS model were calculated to be 0.979 and 0.070; for ANFIS-GA, these were 0.986 and 0.056, respectively. In addition, the average discrepancy ratio (DRave) for ANFIS and ANFIS-GA models was 0.984 and 0.988, respectively. Also, it was shown that the ANFIS-GA models had more accuracy, as compared to the ANFIS models. Moreover, a sensitivity analysis showed that Froude number (Fr) and ratio of flow depth to radius of scour hole (h/L) were the most influential input parameters for simulating the scour depth around bridge abutments.

M. Ghodspour, M. Sarai Tabrizi, A. Saremi, H. Kardan Moghadam, M. Akbari,
Volume 25, Issue 3 (12-2021)
Abstract

The application of simulation-optimization models is a valuable tool for selecting the appropriate cropping pattern. The main objective of this research is to develop a two-objective simulation-optimization model to determine the pattern of cultivation and water allocation. The model performs the optimization with the multi-objective metamorphic algorithm (MOALO) after simulating different states of the cultivation pattern. The decision variables including land and water allocated to ten-day periods of plant growth were designed in a way that the minimum utilization of water resources and economic maximization were identified as target functions. The developed model was used to simulate and optimize the cultivation pattern with an area of ​​5500 hectares and water allocation of Semnan plain with renewable water at the rate of 60.8 million cubic meters. Harvesting scenarios of 80 (GW80) and 100 (GW100) percent of renewable groundwater and scenarios of change in existing cropping pattern of 30 (AC30) and 60 (AC60) percent were considered and each scenario was simulated with the MOALO algorithm. Optimization using the proposed model in four scenarios improved the water and economic objective functions compared to the initial simulation performance. The results showed that the four proposed scenarios were obtained by minimizing the water objective function and maximizing the economic objective function relative to the current situation (simulation). In general, the proposed model had a good performance despite its simplicity, which is a specialized tool to optimize the crop pattern with water allocation.

F. Ghasemi-Saadat Abadi, S. Zand-Parsa, M. Mahbod,
Volume 25, Issue 4 (3-2022)
Abstract

In arid and semi-arid regions, water resource management and optimization of applying irrigation water are particularly important. For optimization of applying irrigation water, the estimated values of actual evapotranspiration are necessary for avoiding excessive or inadequate applying water. The estimation of actual crop evapotranspiration is not possible in large areas using the traditional methods. Hence, it is recommended to use remote sensing algorithms for these areas. In this research, actual evapotranspiration of wheat fields was estimated using METRIC algorithm (Mapping EvapoTranspiration at high Resolution with Internalized Calibration), using ground-based meteorological data and satellite images of Landsat8 at the Faculty of Agriculture, Shiraz University, in 2016-2018. In the process of METRIC execution, cold pixels are located in well-irrigated wheat fields where there is no water stress and maximum crop evapotranspiration occurred. The estimated maximum values of evapotranspiration using the METRIC algorithm were validated favorably using the obtained values by the AquaCrop model with NRMSE (Normalized Root Mean Square Errors) equal to 0.12. Finally, the values of water productivity (grain yield per unit volume of evapotranspiration) and irrigation efficiency were estimated using the values of predicted actual evapotranspiration using remote sensing technique. The values of measured irrigation water and produced wheat grain yield in 179 ha were estimated at 0.86 kg m-3 and 75%, respectively.

A. Mehrabi, M. Heidar Pour, H. R. Safavi,
Volume 25, Issue 4 (3-2022)
Abstract

Designing an optimal crop pattern and on-time water allocation of water resources along with deficit irrigation are among the optimal solutions to maximize the water economic efficiency index. In this paper, the simultaneous optimization of crop pattern and water allocation are discussed using the deficit irrigation method. The study area is located west of the Qazvin plain irrigation network. The six different levels of percentage reduction of irrigation rate (0, 0 to 10, 0 to 20, 0 to 30, 0 to 40, and 0 to 50%) in three climatic conditions consist of dry, normal, and wet years were compared. The best irrigation scenario was selected for each year, and the results were compared with the existing crop pattern of the same year. The new crop pattern included the main crops of the region and the addition of rapeseed. The objective was to reach the maximum net benefit per unit volume of water by considering the maximum extraction of monthly and annual surface and groundwater. The results showed that the best scenario in the dry year was maximum deficit irrigation up to 20%, in a normal year full irrigation, and a wet year maximum deficit irrigation up to 10%. The improvement of economic water productivity in a dry year was 52.2%, in a normal year 41.5%, and in a wet year is 19.6% compared to the existing crop pattern. The average percentage of annual irrigation supply increases from 64.3 to 91.7% in a dry year, from 70 to 100% in a normal year, and from 77.5 to 97.1% in a wet year. Also, the relative yield of all crops, especially wheat, alfalfa, and sugar beet significantly increases. Therefore, the gravitational search algorithm as an optimization model can be considered in selecting the suitable crop pattern and allocation of surface and groundwater resources concerning economic benefits in irrigation networks management.

S. Azadi, H. Nozari, S. Marofi, B. Ghanbarian,
Volume 27, Issue 3 (12-2023)
Abstract

One of the strategies for agricultural development is the optimal use of irrigation and drainage networks, which will lead to higher productivity and environmental protection. The present study used the system dynamics approach to develop a model for simulating the cultivated area of the Shahid Chamran irrigation and drainage network located in Khuzestan province by considering environmental issues. Limit test and sensitivity analysis were used for model validation. The results showed the proper performance of the model and the logical relationship between its parameters. Also, the cropping pattern of the network was determined in two modes of non-stepwise and stepwise changes to determine the optimal cultivated area of the Shahid Chamran network with environmental objectives and minimize the amount of salt from drains. The results showed that the amount of optimized output salt from the network has decreased in both non-stepwise and stepwise changes compared to the existing situation in the region. The total output salt in the current situation, from 2013 to 2017, was obtained at 2799, 2649, 2749, 2298, and 2004 tons.day-1, respectively, in the stepwise changes, are 2739, 2546, 2644, 2223, and 1952 tons.day-1, and finally, in the non-stepwise changes, are 2363, 2309, 2481, 2151, and 1912 tons.day-1. The results showed that the non-stepwise changes due to considered limitations have been more successful in reducing output salt than the stepwise changes. The analysis of the results showed the model's success in optimizing and achieving the desired goals. The results showed that the present model has good accuracy in simulating and optimizing the irrigation network, cropping pattern, and defining other scenarios.


Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb