Showing 245 results for Cu
M Karami, M Afyuni, Y Rezaee Nejad, A Khosh Goftarmanesh,
Volume 12, Issue 46 (1-2009)
Abstract
Sewage sludge application on farmland as fertilizer is commonly practiced in many countries. Sewage sludge is rich in macro and micronutrients. However, high concentration of heavy metals in sludge may cause pollution of soil, groundwater and human food chain because of toxic metals uptake by crops. The objective of this study was to determine residual and cumulative effects of sewage sludge on concentration of Zn and Cu in soil and wheat. Different levels of 0, 25, 50 and 100 Mg ha-1 of sewage sludge were applied to the soil for four years. To study the cumulative and residual effects of the sewage sludge, applications were repeated on three fourth of each plot in the second year, on one half of plots in the third year and on one fourth of plots in the fourth year. Wheat was grown in the plots. After the fourth year, soil samples from the 0-20 cm depth of the different parts of the plots were taken and analyzed. After harvesting the wheat, roots, stems and grains were separately analyzed for the heavy metal concentrations. Cumulative sewage sludge application significantly (P≤0.05) increased the total and DTPA-extractable concentration of Zn and Cu in soil. Residual sewage sludge in the soil also increased the total and DTPA-extractable concentration of Zn and Cu. Single sludge applications at different rates increased the DTPA-extractable concentrations of heavy metals. In subsequent years with no further sludge application, DTPA–extractable metal concentrations in soil decreased continuously, approaching the levels in the control. However, even after four years, DTPA-extractable concentration of Zn in plots receiving more than 50 Mg ha-1 and Cu in plots receiving more than 25 Mg ha-1 sludge, were still significantly higher than control. DTPA-extractable concentrations of metals were closely correlated with total concentrations. Sewage sludge had a significant effect on concentration of Zn and Cu in stems and grains. Cumulative effects on Zn and Cu uptake by stems were more than residual effects. The results of this study show that cumulative and residual effects of sewage sludge application increased concentrations of micronutrients in soil and wheat.
M Valipour, M Karimian Eghbal, M.j Malakouti, A Khosh Goftamanesh,
Volume 12, Issue 46 (1-2009)
Abstract
Salinization and alkalization are considered spatiotemporal dynamic soil degradation processes. In order to investigate the effects of agricultural activities on land degradation and soil salinity, Shamsabad area in Qom province was selected. Aerial photos (1955) and satellite images (1990-2002) were used to examine the changes in land use. Soil samples were collected from 25 locations in the study area from 0-50 cm and 51-100 cm depth at each location. For comparative purposes, sampling locations in this study were similar to locations used for salinity study in 1983. For each sample, pH, electrical conductivity (ECe), base saturation percentage, exchangeable sodium, lime and texture were measured. Land use and salinity maps were created by using geographic information system (GIS) softwares. Results revealed an increase of 9.5 times in cultivated lands in 47 years. Increase in agricultural activities in the study area has also intensified the pressure on water resource in the area, lowering ground water tables and degrading water quality. In the 0-50 cm soil depth, the average soil ECe was 6.5 dS/m in 1983, which increased to 10.7 dS/m in 2005. If soil salinity trend and pressure on water resources continue, large part of Shamsabad area is expected to change to desert in near future years.
E Izadi, M Heidar Pour, A Kabiri Samani,
Volume 12, Issue 46 (1-2009)
Abstract
In this study, the flow characteristics have been investigated by measuring separation zone, surface and velocity profiles over the circular crested side weirs. An equation was proposed for the length of the separation zone using dimensional, statistical and regression analysis. The dimensional analysis showed that the length of separation zone depends on the upstream to the downstream water depth over the side weir, channel width to the downstream water depth and the Froude number. Comparison of the longitudinal and sectional surface profiles showed that the surface profiles at the vicinity of the side weir are non-uniform, due to separation zone close to the side weir. Therefore, the suitable place for measuring the characteristics of flow is along the centre line of the channel. It was observed that the maximum velocity occurred below the surface water which might be due to the secondary flow around the side weir. By increasing the distance far enough from the side weir, the effects of secondary flow were minimized and the velocity profiles tended to be uniform.
V Zabihollahi, F Maighany, M Baghestany, M Mirhady,
Volume 13, Issue 47 (4-2009)
Abstract
To study the goosegrass (Eleusine indica (L.) Gaertn.) in tall fescue (Festuca arundinacea Schreb.), an experiment in 15-year old turf was conducted during 2006 in Tehran in Sheikh Fazlollah highway using randomized complete block design with 4 replications in 1*1 m2 plots. Treatments were diclofop methyl at 2.5 and 3 Lha-1, fenoxaprop-p-ethyl at 0.8 and 1 Lha-1, clodinafop propargyl at 0.6 and 0.8 Lha-1, tralkoxydim at 1 and 1.2 Lha-1, sulfosulfuron at 27 and 35 gha-1 and untreated control. All treatments were repeated 3 times during the growing period of goosegrass. The results showed that after the last spraying, diclofop methyl at 2.5 and 3 Lha-1, fenoxaprop-p-ethyl at 0.8 and 1 Lha-1, clodinafop propargyl at 0.6 and 0.8 Lha-1 decreased goosegrass's biomass up to 81, 83.64, 81.26, 78.58, 80.27 and 81.26 percent, respectively and goosegrass's density up to 82.5, 83.13, 79.38, 79.38, 78.75 and 80.63 percent, respectively, without significant differences. Treatment after 2 times of spraying controlled goosegrass more than 80 percent. Tralkoxydim and sulfosulfuron decreased goosegrass' biomas and density about 70 and 60 percent, respectively. One week after the last spraying, diclofop methyl, fenoxaprop-p-ethyl and clodinafop propargyl treatments did not decrease tall fescue's biomass without significant differences with untreated control. Turf biomass was decreased by tralkoxydim at 1 and 1.2 Lha-1 and sulfosulfuron at 27 and 35 gha-1, by 37.54, 36.79, 40.48 and 48.55 percent, respectively. Herbicide treatments made visual rating by 49.38, 48.75, 48.75 and 50.63 percent, respectively. Overall, diclofop methyl at 2.5 Lha-1, fenoxaprop-p-ethyl at 0.8 Lha-1 and clodinafop propargyl at 0.6 Lha-1 can be recommended for goosegrass control in tall fescue because of insignificant differences between both their doses, bio-environmental problems, costs, and no damage to tall fescue.
Kh Alizadeh, M Soloki, A Joharali, A Ebadi, A Torabi,
Volume 13, Issue 47 (4-2009)
Abstract
This study was set up in the research station of Rice Research Institute of Iran (RRII) to determine the response of three hetrotic Indica × Indica rice hybrids (Bahar1, IR75221H and IR69688H) to anther culture on four induction media (N6, modified N6, chu and modified chu). To evaluate hybrids, the percentage of calluses which had been made from anthers in early uni- to mid- uninucleate stage and the number of regenerated plantlets of calluses in those media were determined. The results indicated that genotype, composition of callus induction medium and their interactions significantly affected callus percentage, total plant regeneration and production of green and albino plants. IR75221H hybrid was considerably superior for callus induction (1/64%) and Bahar1 hybrid was the most desirable for producing of green plants (3/43%) and total regeneration (12/24%). IR75221H hybrid produced higher albino plant (10/66%) and IR69688H hybrid produced lower albino plant (6/45%). The best medium culture in the case of callus induction was modified N6 (2%) and total regeneration (21/82%) produced green plant (5/6%), and albino plant (16/22%) was modified Chu among all media culture. However, genotypes showed different results in each media culture, and responses to hybrid of anther culture was low, but by changing the media culture we increased the response of culture.
E Dehghan, M Almasi,
Volume 13, Issue 47 (4-2009)
Abstract
Soil tillage management for various crops in different regions needs use available indices and information about condition, manual manner, defects and preferences of various tillage methods. Therefore, this experiment was conducted in summer 2003 on clay soil containing wheat residual in Shawoor agricultural research center, situated in northern Ahwaz. Experiment was conducted as a Randomized Complete Block Design (RCBD). Treatments included: conventional tillage in one pass of moldboard plowing in 20cm depth + leveler (T1), two passes of disk harrow in 8-10cm depth + leveler (T2), two passes of disk harrow in 12-15cm depth + leveler (T3), one pass of cultivator in 10cm depth + leveler (T4), one pass of cultivator in 15cm depth + leveler (T5) and one pass of rotivator in 5cm depth (T6). The results showed that fuel consumption decreased for T2-T6 57, 51, 67, 54 and 69 % as compared to T1 (49 L/ha), respectively. Total operation time decrease in T2-T6 42, 46, 42, 54 and 44 % in comparison to T1 (4.41 h/ha) respectively. Field capacity increased for T2-T6 as much as 2.4, 2.2, 2.4, 1.8 and 2.3ha/h compared to T1, respectively. Mean weight diameter (MWD) index increased in T2-T5 29, 21, 10 and 5 % than T1 (1.92cm), respectively, but decreased 6% in T6. Mean tillage costs reduced in T2-T6 as much as 40, 32, 54, 50 and 60 % compared to T1 (500000 Rial/ha), respectively.
S Salehi, K Rezaee Moghadam, A Ajili,
Volume 13, Issue 47 (4-2009)
Abstract
Variable rate technology-spraying technologies are new aspect of sustainable agriculture. In these technologies, the chemical is applied in the needed level of farm where there is a high intensity of pests and weeds. The purpose of this paper was to study the agricultural specialists' attitude toward and intention to use variable rate technology-spraying technologies in Jihad-e-Keshavarzi organization of Fars and Khuzestan provinces. A survey was conducted using a stratified random sampling to collect data from 249 agricultural specialists. The results showed that the specialists of Fars and Khuzestan provinces have intentions to use the variable rate technology-spraying technologies. The variables including attitude toward application, trialing, perceived usefulness, compatibility, and attitude of confidence all influence the intentions to use the variable rate technology-spraying technologies. Based on high positive intention of agricultural specialists, we recommend the use of these technologies in agricultural practices of the two provinces.
M Moradi, A Zomorodian,
Volume 13, Issue 48 (7-2009)
Abstract
In this work, a cabinet solar dryer for thin layer drying of Cuminum cyminum was evaluated in two conditions (Indirect and Mixed). Four levels of drying air flow rates (three active and one passive) were adopted. The experiments were performed in a completely randomized Block design pattern in three replications. Drying durations were kept constant (90 min) for all the experiments. Average initial moisture content of Cuminum cyminum was 43.5 %( db) and the product was set to be dried for 90min in the solar dryer (average 8%d.b). The effects of the drying air flow rates and modes of drying were highly significant in final moisture content of Cuminum cyminum. Duncan test was selected to evaluate the effects of different factors on average moisture content of the samples. The results showed that the passive air flow system in mixed mode drying conditions for drying the Cuminum cyminum was best. The drying duration for the mentioned condition was 55min to dry the product from 43.5% to 8 %( db). The experiments were conducted each sunny day of August-September 2007 from 11.30 till 13.The average solar irradiance was recorded 750 W/m2 average ambient air temperature was32°C and average ambient relative humidity was20%. Using the dryer in the best selected conditions reduced the moisture content of the product from 43.5% to 4.95% after 90 min.
A Esmaeili, F Nasrnia,
Volume 13, Issue 48 (7-2009)
Abstract
Deforestation has been recognized as one of the biggest environmental problems in the world. It is also one of the main elements of land productivity changes and one of the biggest factors which threaten world's environmental diversity. In this study, based on environmental Kuznets theory, factors which may affect deforestation have been investigated. Results obtained from 71 studied countries show that environmental Kuznets curve was not true for them. Population growth helps the speed of deforestation while higher rate of GDP growth decreases its rate. Institutions which help with the improvement of democracy, individual assets, civil right and political liberty can decrease the pressure on natural recourses and deforestation.
F Ahmadloo, M Tabari, A Rahmani, H Yosefzadeh,
Volume 13, Issue 48 (7-2009)
Abstract
This research was carried out to improve the growth and performance of Arizona cypress (Cupressus arizonica) and Medite cypress (C. sempervirens var. horizantalis) seedlings in different combinations of organic matter in nursery of Koloudeh, located in Amol city (north of Iran). Seeds in plastic pots were sown as a completely randomized design (RCD) with four replications at different soil treatments including: T1) nursery soil (control), T2) control soil: cattle manure (5:1), T3) control soil: decomposited litter (5:1), T4) control soil: cattle manure: decomposited litter (5:1:1). The results after one year showed that the seedlings of both species grown on T4 obtained the greatest shoot height, collar diameter, seedling Vigor Index, shoot dry weight, root dry weight, total dry weight and seedling Quality Index (QI) among all the soils examined. The response of most attributes to soil was better in Cupressus arizonica than in C. sempervirens. It is concluded that organic matter caused the increase of growth and biomass of seedlings in both species. It can be proposed that in order to enhance the performance and improvement of Quality Index of seedlings in nurseries, the status of physico-chemical of soil-media should be seriously evaluated.
M Ahmadi, M Bahrani,
Volume 13, Issue 48 (7-2009)
Abstract
A study was conducted in 2007 to investigate the effect of nitrogen fertilizer rates (0, 30, 60 Kg ha-1) on some agronomic characteristics, seed yield and oil percentage in three Sesame(Sesamum indicum L.) cultivars (Dashtestan, Darab 14, and Zarghan) in Kaki region (Bushehr Province). The type of design was completely randomized block with factorial arrangement and three replications. Nitrogen(N) fertilizer had a very significant effect on agronomic characteristics, such as number of capsules in the main stem, number of capsules per plant, branches /plant, biological yield, seed yield ,and oil percentage, but had no effect on 1000 seed weight. There was no significant difference between the application of 30 and 60 Kg of N fertilizer ha-1 with respect to harvest index. Seed yield increased as N rate increased, but each cultivar had a different response to different rates of nitrogen. Dashtestan and Zarghan had superiority over Darab 14 with respect to overall agronomic properties such as response to fertilizer and early maturity, but from the qualitative point of view, Darab 14 produced higher percentage of oil.
R Molavi, M Baghernejad, E Adhami,
Volume 13, Issue 49 (10-2009)
Abstract
Fire is widely used to clear farms in Iran, while there is little information regarding the effects of fire on the characteristics, especially mineralogy of soils. The objectives of the present study were to 1) compare some physico-chemical properties of burned and unburned soils and 2) evaluate minerals transformation in top soil layer resulting from increasing temperature. Soil samples were taken from 0-5 and 5-15 cm depths of two burned places, an agricultural soil from Takht-e-Jamshid area and Bamoo forest, in four replications. Physico-chemical analyses were carried out on burned and unburned samples. X-ray diffraction technique was used to identify minerals of clay fraction in 0-5 cm depth burned and unburned soil, and also to compare transformation of minerals (if any) after heating at 300˚C and 600˚C for 2, 4, 8 and 12 h. Burning increased soil pH and sand sized fraction in 0-5 cm, and P and K in both depths of Bamoo forest. Changes in soil properties of agricultural filed were negligible. XRD analyses showed the reduction in the intensity peaks of chlorite and illite after burning. Lower relative quantity of chlorite and illite was observed in various times of 300˚C treatment in comparison to control, while they were not observed in 8 and 12 h of 600˚C. No change was observed in the peak of quartz in forest and field soils after burning and after various heat treatments.
M Malakouti, M Babaakbari, S Nezami,
Volume 13, Issue 49 (10-2009)
Abstract
To increase grain yield, nitrogen use efficiency (NUE) and nitrogen apparent recovery fraction (NARF) in wheat (Triticum aestivum L.), an experiment was carried out in Karaj Soil and Water Research Station farm for two consecutive growing seasons in 2004-05 and 2005-06. The experimental design was RCBD with 6 treatments (T1= Control T2= 150 kg ha-1 of N as urea in 3-split applications T3= 1/3 N as SCU as the base fertilizer + 2-split urea applications T4= 150 kg ha-1 N as SCU as the base fertilizer T5=150 kg ha-1 of N as urea in 2-split applications and T6=1/3 N as complete fertilizer as the base fertilizer +2-split urea applications) in the first year and 7 treatments (T1= Control T2= 180 kg ha-1 of N as urea in 2-split applications T3= 180 kg ha-1 of N as urea in 3-split applications T4= 180 kg ha-1 N in 5-split urea applications T5 = pre-plant urea + 4-split urea applications T6= 1/3 N as SCU as the base fertilizer +4-split urea applications and T6=1/3 N as complete fertilizer as the base fertilizer +4-split urea applications) in the second year with 3 replications. In the second year, N rate was increased from 150 to 180 kg ha-1, adding the existing extra nutrients in complete macro and fertilizers to other treatments and N split-application was increased up to four times. After harvesting, grain yield, NUE and NARF were measured. The results of first year revealed that the yield, NUE and NARF for T2 (5145 kg ha-1, 13.8 kg kg-1, 41.2%, respectively) and T6 (5067 kg ha-1, 13.2 kg kg-1, 38.2.2%, respectively) were increased significantly at 1% level. In the second year, the maximum grain yield (6335 kg ha-1), NUE (16.2 kg kg-1) and NARF (50%) were obtained again from T6 treatment. Higher yield, NUE and NARF in the second year were mainly due to higher N rates and more N split applications. The economic returns for these substitutions, even without considering any fertilizer subsidies, the averages turned out to be 14, 8 and 4 in these treatments, respectively. Overall results revealed that the substitution of complete macro and SCU fertilizers with pre-plant urea is advisable in wheat production areas. Therefore, it is recommended that the experiment be further tested and evaluated in some wheat growing provinces.l results.
N Ghanavati, M Malakouti, A Hossein Por,
Volume 13, Issue 49 (10-2009)
Abstract
Correlation between components of Q/I and wheat (Triticum aestivum L.) growth indices was studied in a greenhouse experiment during 2003-04 growing season. Eighty soil samples (0 – 30 cm depth) were collected randomly in farms around the Abyak region, Ghazvin province. Twenty-one samples were then selected based on soil texture and NH4OAC-K. The research included treatments of 21 soils and two potassium (K) levels (0, 100 mg/kg) and was conducted in a factorial manner in a randomized complete block design with three replications for studying correlations between Q/I and treatments. Effect of potassium application on the wheat growth was found to be significant at 5% level. The effect of soil properties on wheat growth was also found to be significant at 1% level. However, the interaction of K and soil was not significant. There were no significant differences among the different equilibrium time intervals. The soil potassium buffering capacity (PBCK) values were strongly correlated with CEC (r =0.996**), clay content (r = 0.921**) and moisture saturation percentage (r = 0.811**). Final equation derived from stepwise regression for prediction of PBCK was as follows: PBCK = 7.419 CEC –19.743 R2adj = 0.782** The equilibrium potassium activity ratios (ARke) were strongly correlated with soluble potassium (r =0.846**), NH4OAC-K (r =0.730**), SP (r = 0/794*), OC (r = -0.477ns) and clay content (r=-0.602*). Similarly, readily exchangeable potassium (ΔK0) was strongly correlated with ammonium acetate extractable potassium (r = 0.871**), soluble potassium (r = 0.778**), saturation percentage (r = 0.551*), organic carbon percentage (r=-0.045ns) and clay content (r=-0.206ns). There was no significant correlation between ΔK0 and ARKe with potassium uptake values by wheat. In contrast, there was a strong correlation between PBCK values and potassium uptake by wheat (r = 0.729**), and relative wheat yield (r = 0.735**). There was no significant correlation between Q/I parameters when KCl and K2SO4 were used, and the soil physicochemical properties. However, Q/I parameters obtained from KCl showed a higher correlation with wheat plant's growth indices.
M. Boyerahmadi, F. Raiesi , J. Mohammadi,
Volume 14, Issue 51 (4-2010)
Abstract
Similar to plants, soil salinity may reduce microbial growth and activities in different ways. The aim of this study was to determine the effects of different levels of salinity on some microbial indices in the presence and absence of plant's living roots. In this study, five levels of salinity using NaCl, CaCl2, MgCl2 and KCl and three soil media (soil with no plant, soil cultivated with wheat and clover) replicated three times consisted our factorial experiment arranged in a completely randomized design. Results show that salinity caused a significant reduction in accumulated microbial respiration, microbial biomass carbon, substrate-induced respiration, and carbon availability index in uncultivated soil and in the soils planted with clover and wheat. Results also show that salinity caused a significant increase in metabolic quotient (qCO2) in uncultivated soil, and soils planted with clover and wheat. Microbial activity of cultivated soils at high salinity levels was almost similar to that of the uncultivated soils. We observed a small difference in soil microbial activity among the three media at high salinity levels, indicating the role of indirect effects of salinity might be less important with increasing salinity levels. We also found out that at low salinity levels, the available carbon was not a limiting factor for soil microflora, while at high salinity levels the activity of soil microbes might be carbon-limited. The lower values of qCO2 in cultivated soils compared with the uncultivated soil support the positive influence of root and its exudates on soil microbial activity in saline soils. The existence of plants in saline environments may help in alleviating the detrimental influence of low to medium salinity on most soil microbial activities, likely via the added root exudates and root turnover.
A Khodashenas, A Koocheki, P Rezvani Moghadam, A Lakzian , M Nassiri Mahallati,
Volume 14, Issue 52 (7-2010)
Abstract
Among the biodiversity of soil microorganisms, bacteria have the basic role in soil functions. In order to determine the diversity and abundance of soil bacteria in arid regions, and also to study the effect of agricultural practices on them, a study was conducted in winter wheat fields on Shirvan, Mashhad and Gonabad. In each region, high and low input fields of winter wheat and a natural system for comparison were selected. Use of agricultural inputs was criteria for selection of low and high input fields in each region. Soil sampling was done on fields and natural systems and organic matter content, abundance and diversity of soil bacteria were measured in soil samples. Species richness and abundance of soil bacteria was affected by region and so that natural system of Gonabad has the minimum of species richness among the studied systems and the differences of other systems was not significant. Abundance of soil bacteria in 1 g dry soil was maximum in Gonabad and minimum in Shirvan. Abundance of soil bacteria was affected by organic matter and in low and high input systems of Gonabad and low input system of Mashhad was greater than other systems. Overall, 19 species of bacteria that belonged to 4 genus were detected. Results showed that species richness and abundance of soil bacteria in studied systems were relatively low and agricultural practices have not significant impact on these organisms, so that species richness and abundance of soil bacteria were improved in agricultural systems of Mashhad and Gonabad. Pattern of bacterial diversity showed that regional and agricultural stresses were affected on bacterial function so that in high level of stresses, species richness decreased and function of soil bacteria was restricted to decomposition of organic matter. Therefore, organic matter of soil must be increased and agricultural stresses must be decreased to improve of soil bacterial functions.
M Karimpour, M Afyuni, A Esmaili Sari,
Volume 14, Issue 52 (7-2010)
Abstract
Sewage sludge application on farmland as fertilizer is commonly practiced in many countries. However, high concentration of heavy metals like mercury (Hg) in sludge can cause pollution of soil, plant and the human food chain. In order to examine the risk of Hg transfer into plants a five year field experiment was conducted in which we investigated uptake of Hg from a sludge-amended soil by corn. Sludge application rates were 0, 25, 50 and 100 Mg ha-1. To study cumulative and residual effects of the sewage sludge, applications were repeated on 4/5 of each plot in second year, on 3/5 of plots in third year, on 2/5 of plots in fourth year and in 1/5 of plots in fifth year. After the fifth year, soil samples from the 0-20 and 20-40 cm depths were taken and analyzed for total Hg. Corn plants were harvested and roots, stems and grains were separately analyzed for Hg concentrations. Sludge application significantly increased total Hg concentration in soil. Total Hg concentration in soil ranged from 20 µg kg-1 (in control plots) to 1200 µg kg-1 (in plots with 500 Mg ha-1 sludge application). Sludge application significantly increased uptake of Hg in different plant parts. At the end of the fifth year the average Hg concentrations in root, stem, and grain were 91, 9, and 8 µg kg-1, respectively. Corn yield increased significantly with sludge application and this fertilizer effect was visible five years after a single sludge application.
M. Ozhan , M. Mahdavi , Sh. Khalighi Sigaroudi , A. H. Haghiabi ,
Volume 14, Issue 54 (1-2011)
Abstract
Direct measurement of discharge in rivers is time-consuming and costly, and sometimes, impossible under flood conditions because of the high speed of water, its transitory nature, and the existence of different floaters along the water. Therefore, the discharge-stage relation, known as Discharge Rating Curve is used. Moreover, to design hydraulic constructions, the maximum flood discharge and its maximum height are required. Therefore, to calculate the flood discharges, one should extend the discharge rating curve by using appropriate methods. In this study, in order to determine the best method for the extension of discharge-stage curve, and to estimate the corresponding discharge with high stages, the logarithmic method, the Manning method, the Chezy method, and the Area-Velocity method in 13 hydrometric stations at the Karkheh watershed in Lorestan province were compared. Data measured at each station were gathered for a ten-year statistical period. Results of calculating the Root Mean Square Error (RMSE) and the Mean Bias Error (MBE) for each method showed that the logarithmic method was more accurate than other methods, and it was more appropriate for the extension of the curve at the low average discharge stations. The Area-Velocity method, after the logarithmic method, especially at the stations with higher average discharge showed good results. The Manning and Chezy methods showed the least accuracy.
F. S. Moosavi , F. Raiesi ,
Volume 14, Issue 54 (1-2011)
Abstract
Although the crucial function of earthworms in improvement of soil physical properties is well -know, but very little is known of the interactive influence of earthworms and organic materials on soil properties such as soil aggregate stability, particularly in arid and semi-arid soils. The low organic matter content and the significant role of earthworms in improving physical properties of arid and semi-arid soils necessitate studying the interactive effects of organic materials and earthworms. Thus, the main objective of this study was to identify the interactive effects of anecic earthworm (Lumbricus terrestris L.) and various organic residues (including alfalfa, compost, mixture of alfalfa and compost and cow dung) on soil aggregate stability expressed as the Mean Weight Diameter (MWD), Geometric Mean Diameter (GMD) and Aggregation Ratio (AR), and furthermore soil Ca and Mg contents. The experiment consisted of a 2×5 factorial treatment organized in a completely randomized design with four replications under controlled greenhouse conditions, lasted for 150 days. Results showed that earthworm inoculation and organic materials addition alone increased significantly all the indices of soil aggregation and aggregate stability, and Ca and Mg contents. However, the combined use of earthworms and organic residues resulted in more stable aggregates. Results indicated that earthworm inoculation in the presence of organic materials resulted in 39, 58, 2, 67, 43 and 74% increases, respectively in MWD, AR, GMD, Ca, Mg and macroaggregates whereas microaggregates were reduced by 13.5% in earthworm-worked soils. We observed a significant relationship (R2=0.945) between soil Ca content and MWD, demonstrating that earthworms apparently excrete calcite that helps bonding clay particles and soil organic matter via cationic (Ca+2) bridging. In summary, results of this study show that the simultaneous applications of anecic earthworms and organic materials may considerably help in improving the structure of arid and semi-arid soils with low carbon level.
A. Sanaei Ostovar , A.h. Khoshgoftarmanesh , M.h. Mirzapour ,
Volume 14, Issue 54 (1-2011)
Abstract
This study was conducted to investigate nutritional status and some quality aspects of greenhouse cucumber in Qom province. After selecting 20 greenhouses, concentrations of macro- and micronutrients as well as lead (Pb) and cadmium (Cd) in soil and plant were measured. In addition, some fruit quality attributes were determined. Phosphorus (P) and potassium (K) concentrations in soils were much higher than their critical levels. The mean concentrations of soil DTPA-extractable iron (Fe), copper (Cu), and manganese (Mn) were 12.0, 1.98, and 14.5, respectively. The mean concentration of calcium (Ca) in cucumber leaf was high while in fruit was lower compared to its sufficiency level. Most fruit samples were deficient in K, Fe, Zn, Cu, and Mn. The mean nitrate (336 mg kg-1) and Pb (0.34 mg kg-1) concentrations in cucumber fruits were higher than their acceptable levels. Ascorbic acid concentration of fruits showed positive correlation with Fe concentration. Also, fruit Mg concentration had a positive correlation with the total dissolved solids and negative correlation with fruit moisture content. The results indicated that improper nutrition management in Qom cucumber greenhouses has caused micronutrients deficiencies and high nitrate and Pb concentration, which are important to consumers' health.