Search published articles


Showing 245 results for Cu

A. Masjedi, M. Gholamzadeh Mahmoodi,
Volume 15, Issue 55 (4-2011)
Abstract

Every year river flooding causes serious damage to the bridges at the time needed most. One of the most effective factors causing bridge failure is scouring around the piers in a river bend. One of the methods to decrease scouring around the bridge piers is fitting them with a coller on the piers. The collars protect the river bed against vortex flow in the vicinity of the pier base. An experiment was conducted to study lab flumes made of Plaxiglass with a 180 degree bend and 2.8 m central radius and a 0.6 m width. In this study, a 6cm diameter pier was placed with a circular collar with four different collar sizes in one position in bend with constant discharge and depth under clear-water conditions. The collar was placed at four different elevations. The soil material had a diameter of d50 = 2mm and geometric standard deviation of σg = 1.3. The results of the model study indicated that the maximum depth scouring was highly dependent on the experimental duration. It was observed that as the size of a collar plate increases, the scour decreases. So, minimum depth of scour is dependent on the 3D coller and -0.1D elevation. Circular collar results in maximum reduction in scour depth (93%) compared with no circular collar.
J. Fallahzade , M. A. Hajabbasi,
Volume 15, Issue 55 (4-2011)
Abstract

The salt–affected lands in arid regions of central Iran are characterized by low rainfall, low fertility, high evaporation and salinity. The cultivation of salt–affected lands may have a major influence on soil quality. The aim of this study was to determine the response of soil quality indicators to reclamation and cultivation of salt–affected lands occurring in Abarkooh plain, central Iran. Soil quality indicators were evaluated in three land use systems including salt-affected land, wheat, and alfalfa fields. Composite soil samples were collected at 0–10, 10–20, 20–30, and 30–40 cm layers and analyzed for soil organic carbon, total nitrogen, carbohydrate, particulate organic carbon in macro-aggregates (POCmac) and micro-aggregates (POCmic), organic carbon mineralization and wet aggregate stability. The cultivation of salt–affected land caused a significant decrease in electrical conductivity at all layers and increased the amount of soil organic carbon, total nitrogen, carbohydrate, POCmac, POCmic, and organic carbon mineralization. At all layers, the POCmac/POCmic ratio in the alfalfa fields was higher than that in the wheat fields. The cultivation of salt-affected land caused a significant increase in soil aggregate stability (MWD) at all layers. In most cases, the amounts of soil organic matter and MWD were greater in alfalfa than in the wheat fields, reflecting a better soil quality and thus higher potential for increasing soil organic carbon sequestration in the alfalfa fields
M. Zarei, N. Saleh-Rastin, Gh. Savaghebi,
Volume 15, Issue 55 (4-2011)
Abstract

A greenhouse experiment was conducted in factorial experiment arranged as a completely randomized design (CRD) to evaluate the role of tree indigenous arbuscular mycorrhizal fungi (AMF) species originated from a polluted soil in phytoremediation of zinc polluted soils using maize as a host plant. The experiment consisted of plants inoculated with AMF (G1(Glomus intraradices), G2(Glomus mosseae) and G3(Glomus versiforme)) and G0 as non-inoculated plants and 5 levels of zinc (0, 10, 50, 100 and 500 mg kg -1) in non-sterilized sandy loam soil with three replications. According to the results of greenhouse experiment, the zinc and phosphorus uptake and also the biological yield of maize plants were significantly increased by inoculation with AMF in comparison with non-inoculated plants and also no zinc toxicity symptoms were observed. Uptake, translocation, and phytoextraction efficiency of plants inoculated with G. intraradices was more than the other treatments up to the level of 100 mg kg -1, but at the level of 50 mg kg -1 these amounts were highest in plants inoculated with G. mosseae. The efficicncy of three AMF in zinc uptake was highest at the low level of zinc. In general, under the high soil pollution (500 mg kg-1), G. mosseae was the most effective fungal species in Zn extraction and translocation while G. intraradices had the highest effectiveness for accumulation of Zn in the roots. The overall situation of G. versiforme was mostly between the two other fungal species.
V. Sarvi Moghanloo , M. Chorom, H. Motamedi , B. Alizadeh, Sh. Ostan,
Volume 15, Issue 56 (7-2011)
Abstract

Soil enzymes are the catalysts for important metabolic process functions including the decomposition of organic inputs and the detoxification of xenobiotics. The aim of this research was to determine the pattern of variation in the activities of dehydrogenase, urease, lipase and phosphatase enzymes, determining the number of hetrotrophic and degrading bacteria and measuring the soil respiration and yield plants during the bioremediation of oil contaminated soils. To this aim, the soil deliberately contaminated with crude oil at a 1 and 2 wt% rate and in four treatments including: plant multiflorum (T1), plant multiflorum with mycorrhiza inoculation (T2), plant multiflorum with oil degrading bacteria inoculation (T3), plant multiflorum with mycorrhiza and oil degrading bacteria inoculation (T4) was employed for bioremediation of oil contaminated soil. The above parameters were determined in five stages during bioremediation and ultimately for the yield of plants at the end of this period .The results showed that the activity of urease and hydrogenase anzymes were increased or decreased parallel to contaminant increase and decrease. In contrast, the activity of lipase anzyme was decreased with contaminant increase and increased with contaminant decrease. Therfore, it can be a good choice for monitoring of bioremediation of contaminated soils. The results showed that the number of degrading and hetrotrophic microorganisms were increased by increasing the amount of contamination and the number of degrading and heterotrophic bacteria were decreased parallel to contaminant decreasing especially in those samples treated with mycorrhiza inoculation. The plant yield and amount of degradation of oil compounds were highest in mycorrhiza plus degrading bacteria treatment.
A.r. Melali , M.a. Hajabbasi, M. Afyuni, A. H. Khoshgoftarmanesh,
Volume 15, Issue 56 (7-2011)
Abstract

The petroleum refinery sludge is an important source of environmental pollution. Burning and burying of the sludge may have adverse effects on environment and human health. Thus, other mechanisms for decreasing the toxic effects of hydrocarbon substances in the sludge must be used. In this study, Isfahan refinery sludge was dewatered, air dried and mixed by 0, 10, 20, 30 and 40% w/w ratio with two calcareous soils, viz., Mahmoud Abad (Typic Haplocalcids with clay texture) and Bagh Parandegan (Anthropic Torrifluvents with silty loam texture). Different mixtures of soil and sludge were farmed for 21 days and irrigated on a daily basis to field capacity. Then, 100 seeds of Tallfescue (Festuca arundinacea) and Agropyron were planted in polluted soils with 3 replicates in 3 kg pots for 5 months. Result showed that Tallfescue and Agropyron yields decreased in sludge contaminated treatments. In the 40% sludge treatment, Tallfescue decreased the total petroleum hydrocarbons content by 65 percent. The highest degradation for agropyron was in the 30% sludge treatment which showed about 55% reduction in total petroleum hydrocarbons. The 40% sludge treatment resulted in the minimum yields of root and shoot plants. The highest degradation of TPHs occurred in the Tallfescue rhizospher of 40% sludge. Maximum degradation of TPHs on the Agropyron rhizospher was in 30% sludge mixed with Bage parandegan soil, but maximum yield of plant was in 20% sludge. Our study shows that Tallfescue rhizospher is most effective for decreasing TPHs, and that the phytoremediation in soils with more clay can adsorb and fix the toxic components and then at higher levels of pollutions can let the plants grow.
M. Teimouri, M.r. Ghanbarpour, M. Bashirgonbad, M. Zolfaghari, S. Kazemikia,
Volume 15, Issue 57 (10-2011)
Abstract

Baseflow separation has long been an important topic in hydrology and has a crucial role in water resources management in arid and semi arid regions like Iran. In this paper, a comparison among commonly used automated techniques for hydrograph separation including theoretical method of local minimum and digital filter of one parameter with different filtering parameters of 0.9 to 0.975 and two parameter methods was done to estimate baseflow using baseflow index. For this purpose, daily flow data in some stream gauging stations in west Azarbaijan province were used. For comparison, in addition to baseflow index the graphical method based on the observed daily flow data and correlation coefficient among them was utilized. The main aim of this research is distinguishing the most suitable method in hydrograph separation and estimating the baseflow. Results showed that in different methods baseflow largely contributes to streamflow and also has high fluctuations. However, the results of the digital filter with two parameters appear to be hydrologically more plausible than those of the other methods, but the results of digital filter with proper parameter - in this region one parameter method with filter of 0.925- has proper estimation accuracy. Also, the baseflow index based on method of two parameter digital filtering varies from 0.54 to 0.78 in this study area.
L. Rahimi, N. Aliasgharzad, Sh. Oustan,
Volume 15, Issue 58 (3-2012)
Abstract

Azotobacter chroococcum can improve mineral nutrition of plants through N2 fixation and plant growth promoting capabilities. Fourteen strains of A. chroococcum were isolated from rhizosphere of wheat plants grown in different field conditions around Tabriz, northwest of Iran. In a pot culture experiment with sterile soil, wheat plants (Triticum aestivum cv. Falat) were inoculated with 14 bacterial strains. Positive control received nitrogen fertilizer without bacterial inoculation and the negative control was left un-inoculated and without N- fertilizer. Totally, 16 trearments with four replications were arranged in a completely randomized design. The plant growth indices and N and P concentrations of shoot and root were determined at the harvest time. Results showed that the inoculation with Azotobacter strains caused a significant increase in shoot and root dry weights. Bacterial inoculation significantly enhanced the concentration and content of N in shoot and root. Phosphorus content was only enhanced (p<0.05) in the root. Translocations of N and P from root to shoot were markedly increased in bacterial treatments compared to the positive and negative controls. Moreover, strains 1 and 48 which showed relatively higher phosphate solubilizing capability and phosphatase activity in in-vitro assay also brought about higher P content and concentration in shoot and its translocation from root to shoot.
M. Rezaie Pasha, A. Kavian, Gh. Vahabzade,
Volume 15, Issue 58 (3-2012)
Abstract

As the first event in soil erosion, rain splash erosion causes movement of soil fragments. Splash is an important process in interrill erosion. The amount of soil particles detached from the surface is associated with soil and rain characteristics and may be affected by rainfall erosivity and soil erodibility. Therefore, in this study, splash erosion rate and its relation with some soil properties were studied. 120 soil samples were collected from three adjacent land uses including forest, rangeland and agriculture in two depths of 0-10 and10-20 cm in Kasilian Watershed. Soil samples were investigated under the experimental condition using splash cup and rainfall simulator. Results showed no significant differences between splash erosion in different land uses. Cultivated and rangeland soils were found to show a significantly lower organic matter (OM) by 59.93% and 33.62% in depth (0-10cm) and 33.33% and 25.59% in depth (10-20cm), respectively. We also found significance positive correlation between percent of silt and splash erosion rate in agriculture (r=0.69, p=0.018) and significance negative correlation between soil organic matter and splash erosion rate in rangeland (r=0.767, p=0.001) and significance positive correlation between K-USLE and splash erosion rate in agriculture (r=0.00, p=0.758).
H. R. Fooladmand, S. Hadipour,
Volume 15, Issue 58 (3-2012)
Abstract

Soil water characteristic curve shows the relationship between soil water content and matric suction, which has an important role in water movement in the soil. The measurement of this curve is expensive and time-consuming in laboratory therefore, many methods have been proposed for its estimation including pedotransfer functions. By using the pedotransfer functions, soil water characteristic curve can be estimated based on other easily measured soil physicochemical properties. Parametric pedotransfer functions have been offered for parameters of the existing soil water characteristic curve models. In this study, 12 internal and external parametric pedotransfer functions of Brooks and Corey, Campbell and van Genuchten models were used and evaluated for 30 top soil samples in Fars province. To this end, the soil water characteristic curve and other necessary soil properties were measured, and then all soils according to the texture were divided into three groups of fine, medium and course textures. The results showed that the parametric pedotransfer functions of van Genuchten model were better than the other models, beacause of the better fit of this model to the measured data. Also, the results demonstrated that the parametric pedotransfer functions of Wosten et al. were the most appropriate method for estimating the soil water characteristic curve for the selected soils in Fars province, and that internal pedotransfer functions were not appropriate
F. Kooti, S. M. Kashefipour, M. Ghomeshi,
Volume 16, Issue 59 (4-2012)
Abstract

In this paper, velocity profiles were analyzed under different conditions such as bed slope, discharge and concentration of density current, and water entrainment. Experiments were carried out in a tilting flume with the density currents being provided using salt and water solution. Results showed that the above mentioned factors have significant effects on the velocity profile characteristics. Dimensionless velocity profiles were also provided and compared for sub-critical, critical and supercritical flow conditions and the results showed that for supper critical conditions the velocity profiles are generally thicker due to the more ambient water entrainment. The coefficients of velocity profile equations were also derived for the jet and wall zones, which showed good agreements with the experimental measurements. Relative values of the velocity profile characteristics were also calculated in order to have a better understanding about the velocity profile structure.
H. Emami, M. Shorafa, M. R. Neyshabouri,
Volume 16, Issue 59 (4-2012)
Abstract

Direct measurement of soil unsaturated hydraulic conductivity (K(h) or K(θ)) is difficult and time-consuming, and often in many applied models, predicting hydraulic conductivity is carried out according to measurements of soil retention curve and saturated hydraulic conductivity (Ks). However, using KS as a matching point in many procedures may result in over-estimation of unsaturated hydraulic conductivity in dry regions. Therefore, the unsaturated hydraulic conductivity at inflection point of retention curve (Ki) and Ks was used as a matching point to predict K(h). For measurement of K(h), 30 soil samples were collected based on variety of soil texture (8 texture classes from sandy to clay) and other chemical and physical properties. In addition to Ks, K(θ) values of undisturbed samples were measured using multi-step outflow method at matric suctions of 0.1, 0.2, 0.3, 0.5 0.7, 1 bar and inflection point of retention curve by using hanging water column and pressure plate. Then, the measured K(h), and water diffusivity (D(θ)) values were compared to the predicted values of van Genuchten and Brooks and Corey models (with Mualem and Burdine constraint). The results showed that for 80% of the samples, the van Genuchten–Mualem model with Ki was the best model for predicting K(h) (i.e. using Ki as a matching point in the van Genuchten–Mualem model resulted in best fitting to measured data). Also, in 6.7 % of samples (two sandy clay samples), Brooks and Corey-Mualem model with Ki and in 13.3 % soil samples (2 silty clay and 2 silty clay loam samples), van Genouchten–Mualem model had a best fitting to K(h) measured data. Furthermore, in 20 % samples (4 clay loam, and 2 silt loam textures), the accuracy and efficiency of van Genuchten–Mualem with Ki and van Genuchten–Mualem models in predicting K(h) were almost similar. According to t-Student test, the mean of RMSE and GSDER of van Genuchten–Mualem model with Ki was significantly less than van Genuchten–Mualem model at P < 0.01. In 90 percent of samples, van Genuchten-Mualem and Brooks and Corey-Burdine theory had the best fitting to the measured data of water diffusivity, but in some cases van Genuchten-Burdine model with Ki was the best model for predicting D(θ).
L. Khodakarami , A. Soffianian,
Volume 16, Issue 59 (4-2012)
Abstract

Precision farming aims to optimize field-level management by providing information on production rate, crop needs, nutrients, pest/disease control, environmental contamination, timing of field practices, soil organic matter and irrigation. Remote sensing and GIS have made huge impacts on agricultural industry by monitoring and managing agricultural lands. Using vegetation indices have been widely used for quantifying net annual production on different scales. The aim of this study was to find a rapid method with acceptable precision for the identification and classification of agricultural lands under cultivation (wheat and barley, alfalfa and potatoes). We used multi-temporal AWiFS data and applied Boolean logic and unsupervised classification. Results indicated that Boolean logic approach had a higher accuracy and precision in comparison to unsupervised classification, although it is more complicated and time consuming.
H. Oroji, A. Golchin,
Volume 16, Issue 61 (10-2012)
Abstract

Potato is one of the most important tuberous crops. To achieve optimum yield in potato, suitable brand and sufficient and balanced soil nutrients are necessary. In order to study the effects of Zinc, Manganese and Copper on potato yield and leaf and tuber concentrations of Phosphorus and Iron, a factorial pot experiment with 32 treatments was conducted in greenhouse of Soil Science Department, Zanjan University, using a completely randomized design and three replications. The study factors were four levels of Zinc(Zn0: 1.14, Zn1: 5, Zn2: 10 and Zn3: 15 mg/kg soil), four levels of Manganese(Mn0: 1.4, Mn1: 5, Mn3: 10 and Mn4: 20 mg/kg soil) and two levels of Copper (Cu0: 0.22 and Cu1: 2 mg/kg soil) which were applied to the soils of planting pots. The results showed that potato yield increased as the soil concentrations of Zinc, Manganese and copper increased to certain levels Soil application of zinc and manganese fertilizers significantly decreased leaf and tuber concentrations of Phosphorus and Iron. Soil application of copper decreased Iron concentration of leaf but not Phosphorus. The highest potato yield was obtained from the treatment of 15, 10 and 2 mg zinc, manganese and copper per kg of soil, respectively.
M. Karam, M. Afyuni, A. H. Khoshgoftarmanesh, M. A. Hajabbasi, H. Khademi, A. Abdi,
Volume 16, Issue 61 (10-2012)
Abstract

The task of modern agriculture is to safeguard the production of high quality food, in a sustainable natural environment under the precondition of pollution not exceeding accepted norms. The sustainability of current land use in agro-ecosystems can be assessed with respect to heavy metal accumulation in soils by balancing the input/ output fluxes. The objectives of this study were to model accumulation rate and the associated uncertainty of Zn in the agro-ecosystems of 3 arid and semi-arid provinces (Fars, Isfahan and Qom). Zinc accumulation rates in the agro-ecosystems were computed using a stochastic mass flux assessment (MFA) model with using Latin Hypercube sampling in combination with Monte-Carlo simulation procedures. Agricultural information including crop types, crop area and yield, kind and number of livestock, application rates of mineral fertilizers, compost and sewage sludge and also metal concentration in plants and soil amendments were used to quantify Zn fluxes and Zn accumulation rates. The results indicated that Zn accumulates considerably in agricultural lands of the studied townships especially in Najafabad (3009 g ha-1yr-1). The major Zn input routes to the agricultural soils (and due to agricultural activities) were manure and mineral fertilizers and the major part of the uncertainty in the Zn accumulation rate resulted from manure source.
H. R. Pourghasemi, H. R. Moradi, M. Mohammdi, R. Mostafazadeh, A. Goli Jirandeh,
Volume 16, Issue 62 (3-2013)
Abstract

The aim of present research is landslide hazard zoning using Bayesian theory in a part of Golestan province. For this purpose, landslides inventory map was created by landslide locations of landslide database (392 landslide locations). Then, the maps of effective parameters in landslide such as slope degree, aspect, altitude, slope curvature, geology, land use, distance of drainage, distance of road, distance of fault, stream power index (SPI), sediment transport index (STI), and rainfall were prepared in GIS environment. Relationship between effective factors and landslide locations were considered using Bayesian probability theory. In the next step, parameters classes weights were found and the landslide susceptibility mapping was achieved by fourteen modeling approaches (using whole parameters and deleting parameters one by one). The verification results by ROC curve and 30% landslide locations showed that the Bayesian probability model has 71.37% accuracy for the second approach of modeling in the study area.
M. Moradzadeh, H. Moazed, G. Sayyad,
Volume 16, Issue 62 (3-2013)
Abstract

The objective of this study was to investigate the effect of potassium zeolite on ammonium ion sorption and retention in a saturated sandy loam soil in laboratory conditions with four treatments of 0, 2, 4 and 8 g zeolite per kg soil. The study was conducted as a completely randomized block design. Simulation of ammonium ion leaching was performed using Hydrus-1D model in the soil columns. Ammonium nitrate fertilizer with a concentration of 10g per liter was added to soil columns and then leaching was performed. Results of the study showed that adding potassium zeolite to soil causes reduction in the mobility of ammonium ion and increase in the retention of ammonium in soil. Also, the results of the Convection- Dispersion (CDE) and Mobile- Immobile (MIM) models investigation indicated that the ammonium ion sorption by soil followed the Freundlich isotherm model. Absorption isotherms and diffusion and dispersion coefficients were determined using the inverse modeling technique. Based on the results obtained, optimized values of Freundlich isotherm of model were much less than the observed amounts. This shows that the Hydrus-1D model is not able to predict the ammonium ion mobility in soil macropores, and as a result, reduces greatly the amount of absorption parameters. Because the soil was disturbed, CDE model estimation was closer to the observed values in all four treatments
M. Toozandehjani, M. Kashefipour,
Volume 16, Issue 62 (3-2013)
Abstract

One of the usual ways to dissipate excess energy in the dam's downstream is hydraulic jump. Hydraulic jump is a rapidly varied flow, in which the flow conditions change from supercritical to sub-critical with a large amount of energy loss. In this research, a combination of two water jets in the form of overflow dam and underflow through a slot on the body of an ogee dam with the USBR standard was established in order to decrease the length and sequent depth in a hydraulic jump. In these experiments, the underflow from the slot was designed with three out passages of 0, 45, and 90 degrees in respect horizontal line. Six different discharge ratios were used for each slot and the effect of each experiment conditions on decreasing of the length and sequent depth of hydraulic jump was investigated. The results showed that the confluence of two jets with 45 degrees from the slot had the maximum effect on the reducing of the length of hydraulic jump and sequent depth, and when 26 percent of the total discharge passed through the slot as underflow, it caused the length of hydraulic jump to be reduced by 50 percent in comparison with the classic jump. This slot not only decreases the length and sequent depth of hydraulic jump but also the sediment behind the dam can be evacuated through it. Moreover, it increases the discharge coefficient.
M. Ghorchiani, Gh. Akbari, H. A. Alikhani, M. Zarei, I. Allahdadi,
Volume 17, Issue 63 (6-2013)
Abstract

In order to evaluate the effect of arbuscular mycorrhizal (AM) fungi and Pseudomonas fluorescens bacteria on phosphorus fertilizer use efficiency, mycorrhizal dependence and grain yield and dry matter yield of maize under water deficit conditions, a field experiment was conducted as split-split plot arrangement based on randomized complete block design with three replications. The treatments in this experiment were included as follows: irrigation (normal irrigation and water deficit stress based on evaporation from class A pan evaporation) combined different seed inoculations with AM and Pseudomonas fluorescens and treatment of chemical phosphate fertilizer (non- consumption of phosphate fertilizer, consumption of 50 percent of triple superphosphate fertilizer needed, and consumption of rock phosphate, based on the quantity of consumed phosphorus of triple superphosphate source). The results showed that effects of irrigation, seed inoculation with AM and Pseudomonas fluorescens biological phosphate fertilizer and chemical phosphate fertilizer were significant on yield and yield components, dry matter yield, relative agronomic efficiency and root colonization. Mild stress significantly reduced grain yield, relative agronomic efficiency and fertilizer agronomic efficiency compared to optimum irrigation. Results showed that grain and dry matter yield are highly correlated with root colonization under mild stress condition. Maximum mycorrhizal dependence was obtained in mild stress condition. Maximum relative agronomic efficiency, fertilizer agronomic efficiency, yield and yield components was related to seed inoculation with AM and Pseudomonas fluorescens. The use of triple superphosphate fertilizer were increased grain yield in comparison with rock phosphate along with inoculation of phosphate solubilizing microorganisms. However, maximum root colonization and mycorrhizal dependence was achieved in non- consumption treatment of phosphate fertilizer.
P. Bagheri , S. M. A. Zomorodian,
Volume 17, Issue 63 (6-2013)
Abstract

Hydraulic conductivity is an important parameter in the design of geotechnical structures such as earth dam, floor construction, retaining walls and environmental structures. In unsaturated soils, hydraulic conductivity is a function of moisture content and soil water suction i.e. soil moisture characteristic curve. In this study, the values of unsaturated hydraulic conductivity in two soil types (Ramjerdi and Molasadra core dam series) at 5 different compactions using Gardner method were measured. Then, the unsaturated hydraulic conductivity was estimated by different models using the soil moisture characteristic curve and was compared with measured values. The results showed that Fredlund and Xing models predict the soil moisture characteristic curves more accurately compared with van Genuchten model. For Ramjerdi soil series and up to nearly 0.25 volumetric water content, (VGM) and (FM) models indicated a good estimation for unsaturated soil conductivity. Also, for Molasadra core dam none of the models resulted in acceptable estimations for unsaturated hydraulic conductivity.
M. Samavati, B. Eskandari,
Volume 17, Issue 63 (6-2013)
Abstract

Quantity-Intensity (Q/I) curves and their derived parameters provide general information about soil Potassium (K) availability. This investigation was conducted to obtain K different varieties and their correlations with K, Q/I parameters in 13 soils sample from Bahar area as the major potato producing area in Iran. Soil Samples were equilibrated with solution containing different potassium activity ratios (ARK), and changes in potassium concentrations in the equilibrium solution (ΔK) were ploted against activity ratio of K, and Q/I parameters were determined. The results showed that, potassium activity ratio at equilibrium (AR0) ranged from 0.007 to 0.995 with an average of 0.16 (mmol L-1)0.5, The readily exchangeable potassium (ΔK0) ranged from 0.04 to 2.199 with an average of 0.49 cmol kg-1, The potassium potential buffering capacity (PBCK) ranged from 13.21 to 75.37 with an average of 42.02 (mmol kg-1) / (mmol L-1)0.5. Highly significant linear correlations were found between PBCK and CEC (r = 0.6*), AR0 and KSO (r = 0.99**), AR0 and Kex (r = 0.85**). Among the studied soils, one soil (Chopolgh Lo soil) absorbed potassim on edge position of clay minerals and the others absorbed potassium on planar surface.

Page 8 from 13     

© 2025 CC BY-NC 4.0 | Journal of Water and Soil Science

Designed & Developed by: Yektaweb