Search published articles


Showing 46 results for Density

H. R. Fooladmand,
Volume 11, Issue 41 (10-2007)
Abstract

  Soil particle size distribution and bulk density are used for estimating soil-moisture characteristic curve. In this model, soil particle size distribution curve is divided into a number of segments, each with a specific particle radius and cumulative percentage of the particles greater than that radius. Using these data, soil-moisture characteristic curve is estimated. In the model a scale factor, a , is used which may be considered as a constant, or obtained by logistic or linear procedures. F or most conditions, soil particle size distribution curve is not available, but only the percentages of clay, silt and sand could be obtained using soil textural data. In this situation, at first a precise soil particle size distribution must be developed, based on which the soil-moisture characteristic curve can be predicted. According to the previous studies, using particle radius of 999 µ m is more appropriate than radius 125 µ m. Also, adjusted coefficients for estimating soil particle size distribution curve for radii 1 to 20  µ m was obtained. In this study, using the soil textural data of 19 different soils from UNSODA database, soil-moisture characteristic curve of each was estimated with logistic and linear methods based on initial and adjusted soil particle size distribution estimation. The estimated values were compared with the measured data. The results indicated that for most soils, using the combination of logistic and adjusted particle size distribution estimation procedures is more appropriate than the previous methods.


P. Sharifi, M. Tajbakhsh,
Volume 11, Issue 41 (10-2007)
Abstract

To evaluate the effect of plant density and detopping on grain yield, protein content biological yield harvest index, growth indices, number of cob in each plant, No. of row per ear, No. of grain in each row, thousand seed weight of corn (Zea mays L. ar. SC 704), an experiment was conducted at the experimental statues of Research Center of Uremia Agricultural College in 2004. The Treatment design was split plot in randomized complete block design with four replications. The main plots included plant density at three levels (53000, 66000, and 88000 Plants/ha) and the subplets comprised three levels: (1) no detopping (control) (2) removing canopy only and (3) removing canopy and three leaves above the node. Analysis of Variance of data showed that both detopping treatment and plant density influenced the number of kernel per ear ,1000 grain weight, ear weight, total dry weight of biomass, seed yield and harvest index. Canopy detopping led to a marked increase in photo assimilateion import grains. The highest plant density evaluated, 88000 plants per hectare with detopping of three above leaves had the highest number of cobs per square meter. In plant density of 53000 plants per hectare and canopy detopping treatment, the number of grain per ear was greater than other densities. The efficiency of harvest index increased under corn detopping compared with control, and this increase with an increase in photosynthesis contributed to grain yield. It was concluded that major increase in grain yield under high plants density and tassel detopping was due to improvement of physiological indices.
H. Pourhadian , M.r. Khajehpour,
Volume 11, Issue 42 (1-2008)
Abstract

  Planting patterns through growth indices affect yield formation. To evaluate these effects on safflower, Koseh local variety of Isfahan, a field experiment was conducted in summer, 2004 at the Agricultural Research Station, Isfahan University of Technology. The experiment was performed using a randomized complete block design with a split plot layout and four replications. Main plots consisted of three row distances (20 and 30 cm flat and 45 cm on bed), and sub-plots included two planting densities (40 and 50 plant m-2). The experiment was planted on June 25. The results showed that p lant canopy closed sooner, leaf area duration (LAD) increased and plant dry matter weight, leaf area index (LAI) and crop growth rate (CGR) were higher up to the middle of seed development as row distance decreased. In addition, the highest relative growth rate (RGR) and net assimilation rate (NAR) were obtained in 20 cm row distance. The highest (3039 kg ha-1) and lowest (1930 kg ha-1) seed yields were obtained with 20 and 40 cm row distances, respectively. Plant density did not affect the rate of canopy closure, CGR, RGR, NAR and seed yield. But, maximum plant dry weight, higher LAI and lower LAD values were obtained with 50 plants m-2. The results obtained in this experiment indicate that 20 cm row distance with 50 plants m-2 might be appropriate for summer planting of safflower, a local variety of Isfahan, under similar conditions.


H. Bayat, A.a. Mahbobi, M.a. Hajabbasi, M.r. Mosaddeghi,
Volume 11, Issue 42 (1-2008)
Abstract

  Tillage is one of the important managing factors that can destroy or improve soil structure. Soil structure is affected by the machines and shape of the wheels. Field experiments were conducted at Hamadan Agricultural Research Station on a coarse loamy mixed mesic Calcixerolic Xerocrepts soil to measure and evaluate the effects of tillage and wheel-induced compaction on selected soil physical properties. Treatments included tillage methods (Moldboard Plow and Chisel Plow, (MP, CP)) performed using three customary tractors in Iran [John Deer (J), Romany (R) and Massey Ferguson ( MF) ]. Traffic zone and non traffic zone were other treatments. A split-plot design with three replications was used in a completely randomized arrangement of treatments. Soil samples were taken at the end of wheat growth season in traffic and non- traffic zone and from four layers and compared for bulk density (BD), cone index (CI), and mean weight diameter (MWD). The influence of both tillage methods on BD in most soil depths was not significant, meanwhile, BD was higher in the deeper layers. Wheel traffic did not affect BD significantly, but its effect decreased by increasing the depth. Commonly, conservation tillage increased structural stability as evaluated by MWD. Cone index illustrated the same trend as for BD, with some variation because of it higher sensitivity, so it was significantly was increased in CP rather than in MP for the traffic zone. Such a difference was not observed in non-traffic zone. The CI was also significantly increased in traffic zone compared with non-traffic zone. J significantly increased CI in two first layer in comparing with MF, but there was not significant difference between J and R. The MWD was increased by chisel plow in non-traffic zone and this increment was significant in fourth soil layer (22.5- 30 cm). Wheel traffic caused the increase of MWD in the second layer and significant difference was not observed in other layers. Overall, R caused less destruction in soil structure and tillage methods changed some of soil physical properties.


M.a. Hajabbasi, A. Besalatpour, A.r. Melali,
Volume 11, Issue 42 (1-2008)
Abstract

  Applying of intensive cultivation especially in marginal and sensitive regions, after conversion of rangelands to cropland farms, commonly causes reduction in soil quality, and thus an increase in soil degradation, erosion and runoff. This study was conducted to evaluate the land use change effects on some soil physical and chemical properties such as mean weight diameter (MWD), soil organic matter (SOM), bulk density (BD) and saturated electrical conductivity (ECe). For the experiment, soil samples were collected from 8 regions (rangeland and cultivated range) from west and southwest of Isfahan. Samples were taken from two soil layers 0-15 and 15-30 cm. Results showed that after conversion of range to cultivated lands, in some regions, SOM content was increased about 39% but in some regions decreased about 26%. This is due to the initial conditions of the regions. The ECe also increased by 41% due to this conversion. However, no changes were observed to the MWD, BD and pH in different treatments. Although there were little change to the physical and chemical properties of soil as a result of this conversion, those properties which were changed, could have a degradation effect and lower the soil quality.


A. Moalemi Ore , S.h. Karparvarfard,
Volume 11, Issue 42 (1-2008)
Abstract

  This study was undertaken to investigate the effects of soil compaction due to wheel traffic on corn growth and yield, in summer 2004 and 2005 at the Badjgah Research Station, Shiraz University located in North West of Shiraz, Iran. The treatments consisted of axial load in two levels and wheel traffic location treatments at four levels, including none, between rows, on rows and on entire plot area. The corn growth rate, root density and yield were not significantly influenced by axial load, but they were significantly affected by wheel traffic in all plots. Corn yield with wheel traffic on entire plot area averaged 3.97 Mg/ha which was significantly lower than the yields with the other treatments which averaged 6.65 Mg/ha with no traffic.


Y. Raei, K. Ghasemi Golezani, A. Javanshir, H. Aliari, A. Mohammadi,
Volume 12, Issue 45 (10-2008)
Abstract

Concerning the effects of increasing the species number on the maintenance of ecological stability and agricultural ecosystems sustainability, two field studies were conducted in 2002 and 2003 to evaluate the effects of plant population densities on soybean and sorghum intercropping at the Research Center, the Faculty of Agriculture, Tabriz University, Tabriz, Iran. Cultural pattern was an additive series. The factorial set of treatments was arranged within a randomized complete block design with three replications. The first factor comprised soybean densities of 20, 30, 40, and 50 plants/m2, and the second factor consisted of sorghum densities of 0, 4, 8, and 12 plants/m2. The results indicated that both soybean and sorghum yields were significantly affected by soybean and sorghum densities. Soybean yield increased as density increased up to 40 plants/m2, and then decreased with increasing soybean density from 40 to 50 plants/m2. With increasing soybean density, sorghum yield was decreased. Sorghum and soybean yields, respectively, increased and decreased as sorghum density increased. On the other hand, Soybean and sorghum densities of 20:4 (1.6) and 50:12 (0.8) had the highest and the lowest LER (Land Equivalent Ratio), respectively. It was, therefore, concluded that intercropping of Soybean and sorghum, is more advantageous, compared to their pure cultivation in the same conditions.
S. Fallah,
Volume 12, Issue 45 (10-2008)
Abstract

To study the effects of planting date and density on yield and its components in chickpea (Cicer arietinum L.) genotypes under dryland conditions of Khorram-Abad, an experiment was conducted during 2005-2006 growing season at the Agricultural Research Station of Lorestan Weather Department. Three sowing dates (March 6, March 21, and April 5) and two chickpea genotypes (Greet and Flip 93-93) with four plant densities (18, 24, 30 and 36 plants m-2 ) were evaluated using a randomized complete block design with split-factorial design in three replications. Dates of planting were considered as the main plots, genotypes and plant densities were randomly distributed in sub-plots with factorial arrangement. The result showed that delay in planting from March 6 to April 5 significantly reduced number of pods per plant, number of grains per pod, 100-grain weight, grain yield and dry matter. Increasing plant density led to a significant decrease in number of pods per plant, number of grains per pod and 100-grain weight. However, grain yield and dry matter increased firstly with increasing plant density and then decreased. Planting date and density had no significant effect on harvest index, while genotype of Greet produced a larger number of pods per plant, grain yield as well as final dry matter. Also Flip93-93 produced a bigger number of grains per pod, greater grain weight and harvest index. The maximum grain yield was obtained with genotype of Greet at the first planting date in 30 plants m-2 density. It could be concluded that due to thermal and drought stress occurring in late spring,, early planting of Greet genotype at 24-30 plants/m2 may lead to a suitable increase in grain yield.
F. Heidari, S. Zehtab-Salmasi, A. Javanshir, H. Aliari, M. R. Dadpour,
Volume 12, Issue 45 (10-2008)
Abstract

In order to examine the effects of plant density on the morohological traits, yield and essential oil of peppermint, an experiment was conduced in Agricultural College of Tabriz University during 2005 and 2006. The treatments included four plant density levels ( 8,12 ,16,20 plants.m-2) with three replications. The treatments were based on a split plot design in time and result analysis of compound variance was done during two years. The two years’ results of the compound variance showed that the plant density affected the fresh yield, dry yield, the bush essential oil percentage and the essential oil yield, but it had no effect on the bush height and the leaf’s essential oil percentage. In the second year, the maximum fresh yield, dry yield, bush height, the bush essential oil percentage, and the essential oil yield were obtained. In the second year, the maximum essential oil yield in the density of 20 plant/m2 was 21.15 li.ha-1.
F Valimohamadi, M Tajbakhsh, A Saeed,
Volume 12, Issue 46 (1-2009)
Abstract

In order to evaluate effect of planting date and plant density on grain yield, yield components and some quality and morphological traits of chickpea (Cicer arietinum L.), an experiment was conducted at the research center of agricultural and natural resources of west Azerbaijan in Urmia rain-fed research farm during 2005-2006 growing season in a split plot arrangement, based on a completely randomized block design with four replications. The cultivar of chickpea (Qazvin local mass) was planted in three sowing dates (mid November, mid March and mid April) in main plots, and four plant densities (intra row space: 7.5, 10, 15 and 20 cm) representing (45, 34, 23 and 17 plant/m2) in sub plots. Yield, number of pod per plant, seed protein content, plant height, number of secondary branches and 100 seed weight were evaluated. Results indicated that date of sowing had a significant effect on the yield, number of pod per plant and seed protein content but was not significant for plant height, secondary branches and 100 seed weight. Highest number of pod per plant was obtained in mid November sowing (37.69) and high protein content (22.63) in mid March. Different plant density effects were also not significant on yield, plant height, secondary branches and 100 seed weight but the effect of density on the number of pod per plant and seed protein content was significant. Highest number of pod per plant was obtained in the third density (31.5), and highest protein content in the first density (22.31). The results of study indicated that between mid March planting in the density (45 plant/m2) had highest yield (1042.08kg/ha) and protein content compared with the other planting dates.
R S.sharifi, A Javanshir, M Shakiba, K Ghasemi Golezani, A Mohamadi, Y Raei,
Volume 12, Issue 46 (1-2009)
Abstract

In order to study yield component and determinate the contribution of stem reserves to corn yield under effect of different densities and interference periods of sorghum, a factorial experiment based on randomized complete block design with three replications was conducted in 2002 on the Research Farm of the Faculty of Agriculture Tabriz University. Experimental factors were sorghum interference at different periods (0,14,28,42 days after corn emergence and also during plant life corn) with three densities (4,8,12 plants m-2). Characteristics of study were yield, yield component and the contribution of stem reserves to corn grain yield. The results showed that with increasing sorghum density and interference, corn yield components (except the number of grain rows) were decreased, due to shading and competition between plants for using available resources. Maximum grain yield and grain number per ear was obtained at pure corn plantation. With increasing sorghum density and interference periods grain yield decreased, and maximum corn yield loss was 38%, which occurred at the highest sorghum density and interference. Dry matter remobilization and contribution of stem reserves were significantly influenced by sorghum densities and interferences in corn grain yield. The highest contribution of dry matter remobilization and stem reserves to corn yield was obtained at maximum density and complete interference of sorghum. The least contribution of reserves was shown in pure corn plantation. This might be related to shading and competition between plants for light and other resources.
S.m Ziaee, M Kafi, J Shabahang, H Khazaee, M Soleimani,
Volume 13, Issue 47 (4-2009)
Abstract

Production of halophytes using saline waters and soils, and feeding livestock with them, is one of the most sustainable ways of desert ecosystems conservation and food production for people living in these areas. A field experiment was conducted at Salinity Research Station, Ferdowsi University of Mashhad, in 2007 to evaluate the effect of planting density and harvesting time on oil and protein yield of Kochia. Treatments were arranged as a split-plot based on a randomized complete block design with three replications. Planting density (10, 20, 30 and 40 plants m-2) as assigned to main plots and two dates of harvesting (after 50% flowering and full maturity) constituted the sub-plots. Plant density had a significant effect on grain yield, mean seed weight, harvest index, oil yield, oil content and protein yield at maturity stage. Forage and protein yield were also affected by plant density at the harvest date of 50% flowering. Total dry matter, protein yield and percentage differed significantly between the two harvest dates. The greatest grain yield (2590 kg ha-1) and oil yield (357.7 kg ha-1) were achieved from 20 plants m-2, whereas those from 10 plants m-2 were minimal. Maximum protein yield (3390 Kg ha-1) was obtained from the planting density of 30 plants m-2 at 50% flowering stage. Based on the results of this study, the best qualitative yields for Kochia could be obtained from a planting density of 30 plants m-2 after 50% flowering but one may recommend planting Kochia at 20 plants m-2 for a high grain or oil production.
V. R. Jalali , M. Homaee,
Volume 15, Issue 56 (7-2011)
Abstract

Soil bulk density measurements are often required as an input parameter for models that predict soil processes. Nonparametric approaches are being used in various fields to estimate continuous variables. One type of the nonparametric lazy learning algorithms, a k-nearest neighbor (k-NN) algorithm was introduced and tested to estimate soil bulk density from other soil properties, including soil textural fractions, EC, pH, SP, OC and TNV. As many as eight nearest neighbors, based on cross validation technique were selected to perform bulk density prediction from the attributes of 136 soil samples. The nonparametric k-NN technique mostly performed equally well using Pearson correlation coefficient (r=0.86), root-mean-squared errors (RMSE=2.5) maximum error (ME=0.15), coefficient of determination (CD=1.3), modeling efficiency (EF=0.75) and coefficient of residual mass (CRM=0.001) statistics. It can be concluded that the k-NN technique is an alternative to other techniques such as pedotransfer functions (PTFs).
F. Kooti, S. M. Kashefipour, M. Ghomeshi,
Volume 16, Issue 59 (4-2012)
Abstract

In this paper, velocity profiles were analyzed under different conditions such as bed slope, discharge and concentration of density current, and water entrainment. Experiments were carried out in a tilting flume with the density currents being provided using salt and water solution. Results showed that the above mentioned factors have significant effects on the velocity profile characteristics. Dimensionless velocity profiles were also provided and compared for sub-critical, critical and supercritical flow conditions and the results showed that for supper critical conditions the velocity profiles are generally thicker due to the more ambient water entrainment. The coefficients of velocity profile equations were also derived for the jet and wall zones, which showed good agreements with the experimental measurements. Relative values of the velocity profile characteristics were also calculated in order to have a better understanding about the velocity profile structure.
E. Farahani, M.r. Mosaddeghi, A.a. Mahboubi,
Volume 16, Issue 61 (10-2012)
Abstract

Hardsetting phenomenon is an indicator of poor soil physical quality. Hardsetting soils are soils with high rate of mechanical strength increase upon drying and are hardened and/or compacted when dry out. It is difficult to till such soils. Hardsetting soils have additional limitations such as poor aeration at wet conditions, low infiltrability and high runoff and erosion. Most of Iran soils have low organic matter content and it is expected that hardsetting phenomenon occurs in some of these soils. This study was conducted to investigate the hardsetting phenomenon on 9 soil series collected from Hamadan province. Three types of mechanical strength consisting tensile strength (ITS), unconfined compressive strength (UCS), and penetration resistance (PR) were measured on the repacked soil samples prepared in the lab. The ITS, UCS and PR tests were done on the soil cores which had been prepared at bulk density (BD) equal to 90% of critical BD for root growth (0.9BDcritical). The effects of intrinsic properties on the hardsetting phenomenon were studied, too. Based on the suggested definition in “International Symposium on Sealing, Crusting and Hardsetting Soils” to International :::union::: of Soil Science, in which a hardsetting soil has air-dry tensile strength ≥ 90 kPa, one soil (medium-textured) out of the studied soils showed the hardsetting phenomenon at 0.9BDcritical. It might be concluded that medium-textured soils are more susceptible to hardsetting. For all of the studied soils, the ITS increased with the increase in clay content. The increasing impacts of clay and carbonate contents were also observed for the UCS and PR, respectively. Calcium carbonate could act as a cementing agent in between the soil particles and brings about the soil susceptibility to hardsetting. Moreover, the decreasing trend of all soil mechanical strengths was observed with water content increase. Slope (b) of the exponential model (fitted to the soil mechanical strength characteristic curve), as an index of hardsetting, had positive correlation with the sand content and negative correlation with the silt content. Overall, texture and calcium carbonate content are major and effective properties in terms of hardsetting phenomenon in Hamadan soils.
S. Ezzati , A. Najafi,
Volume 16, Issue 61 (10-2012)
Abstract

Increase in soil bulk density and reduces in porosity and infiltration rate are the most common disturbances during timber harvesting and ground-base skidding. The present study was conducted to study soil physical properties e.g., soil bulk density, moisture, porosity and soil hydrological properties e.g., soil infiltration from ground-base skidding in twenty years since logging. After initial survey, four abandonment skid trails were selected with similar pedologic, climatic conditions and physiographic and different age in Necka-Zalemrod catchment in east of Mazandaran province. Results indicated that impacts of machinery traffices in high traffic intensity have remained yet 20 years since logging. Means soil bulk density, porosity and void ratio were 42.4 greater, 24.6 and 46.7 percent, respectively, lower than the undisturbed areas. The least infiltration rate was recorded in 1-5 years old skid trail, so the reduction of water was not considerable within 18 minutes after experiment into soil in inner ring in this skid trail. Results in each skid trail firmed that in low traffic intensity soil physical and hydrologic properties was tent to “normal” recover in compare to the undisturbed areas.
S. M. J. Mirzaei, , S. H. Tabatabaei, M. Heidarpour, P. Najafi,
Volume 17, Issue 66 (2-2014)
Abstract

There chemical and organic matter content in garbage leachate that may affect soil physical and hydraulic properties. The main objective of this study was to evaluate the influences of the leachate of Isfahan Organic Fertilizer Factory (IOFF) on some soil physical and hydraulic properties in a soil chemically enriched by Zeolite. The treatments include two soil textures (clay loam and sandy loam) and three levels of zeolite (0, 5 and 10 percent). The treatments were applied on lysimeters scale. The results showed that irrigation with the leachate caused a reduction of infiltration and hydraulic conductivity in the clay loam soil. The hydraulic conductivities in clay loam soil without zeolite (B0) before and after irrigation with leachate were 1.73 and 0.36 m/day, respectively. In contrast, there were no changes in the sandy loam soil’s infiltration and hydraulic conductivity. The hydraulic conductivities in the sandy loam soil with 5 percent zeolite (A5) before and after irrigation with leachate were 3.17 m/day. Furthermore, zeolite had a decreasing effect on those processes. The results show that irrigation with leachate caused reduction of bulk density in two types of soil and all levels of zeolite.
H. Goleij, J. Ahadiyan, M. Ghomeshi, H. Arjmandi,
Volume 18, Issue 69 (12-2014)
Abstract

While the mass density current penetrates the stagnant fluid, a plunge point occurs. In this regard, the boundary of the dense fluid with ambient fluid is determined at the plunge point height. In this research, the hydraulic parameters of the dense flow and the bed slope of the stagnant fluid which have a significant effect on the plunge point have been investigated under the two turbulence models: the k- and the RNG at the Flow-3D model. To achieve the purpose of this research, a physical model was set up at the hydraulics laboratory of Shahid Chamran University (SCU), Ahwaz, Iran. Then, using the Flow-3D model with both the k- and the RNG turbulence model, the height of the plunge point was simulated according to the same experimental condition. Findings showed that the predicted depth under the RNG model is closer to the results of the physical model. For example, the k- and RNG model for the 12% slope can estimate the plunge point depth by 30% and 12.28% respectively more than the experimental data. However, for all the slopes, the k-e model can on average overestimate by 27% and RNG model 10.5% more than the results of experimental data. The statistical analysis showed that the RNG model predicts the plunge point depths with a satisfactory precision.


R. Karimi, M. Hassan Salehi, F. Raiesi,
Volume 18, Issue 69 (12-2014)
Abstract

Improper use of rangelands may lead to their destruction. Therefore, the conversion of these degraded rangelands to agricultural lands and other land uses may improve their soil quality. The purpose of the present study was to evaluate the impact of cultivation in the degraded rangelands on some soil characteristics in Safashahr region of Fars province. Four land uses including the rangeland with sparse vegetation (degraded rangeland), the rangeland converted to agricultural land over 17 years, the agricultural land converted to apple orchard for 4 years and also to an apple orchard for 40 years were selected. Samples were randomly taken from each land use at two depths (0-20 and 20-50 cm) with five replications. The results revealed that land use change significantly increased organic matter and MWD in both soil depths. Bulk density and water dispersible clay increased in agricultural land and new orchard while a decrease was observed for old apple orchard. It is suggested the traditional farming to be replaced with new cultivation methods like minimum tillage and no tillage. Overgrazing of the rangelands must also be avoided.


S. Samadvand, M. Tajbakhsh, K. Anvari, J. Ahmadaali,
Volume 18, Issue 70 (3-2015)
Abstract

An experiment was performed at the Miyandoab Agricultural Research Station to study yield and water use efficiency of furrow and tape irrigation systems in one-row and two-row planting patterns, and to investigate density of grain corn SC704. The experimental design was a completely randomized block arranged in Strip Split Plots with three replications in 2010. Irrigation treatments were applied in vertical plots, and planting arrays of different densities were applied in horizontal plots in the form of split plots. The vertical plots were comprised of four irrigation treatments, including three levels (80%, 100% and 120%) of water requirement by use of drip tape irrigation and 100% of water requirement in furrow irrigation, and the horizontal factor was a planting array in the form of single-row and two-row planting patterns and the sub factor was comprised of three levels: 75, 90 and 105 thousand plants per hectare. The results showed that furrow irrigation had the highest rate of grain yield, about 18.6 ton per hectare, and the treatments of tape irrigation of 120%, 100% and 80% had 18.4, 18.2 and 14.9 tons per hectare, respectively. Although the furrow irrigation treatment had higher yield than the rest, there was no significant difference between treatments except for the 80% of tape irrigation. Thus, by utilizing tape irrigation without a great decrease in the yield, water use efficiency improved. The comparison between treatments of tape irrigation of 80%, 100%, 120% and furrow irrigation led to grain yields of 2.3, 2.2, 1.9 and 1.4 kg/m3, respectively. Also, the highest water use efficiency and maximum yield were obtained from 90000 plants per hectare.



Page 2 from 3     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb