Search published articles


Showing 107 results for Index

A. Vali, F. Roustaei,
Volume 21, Issue 4 (2-2018)
Abstract

Wind erosion is the most important geomorphic process and the main cause of the landscape change in arid and semi-arid areas. This paper focuses on the Dust Storm Index (DSI) with the aim of monitoring wind erosion in Central Iran using meteorology data. The trend of standardized DSI and its three factors which are sever dust storm, moderate dust storm and local dust events were studied using Man-Kendal non-parametric test. It was found that wind erosion is accelerating in recent years. Compared to primary 20 years (1965-1985) DSI rate has been three times more than 30 years ago (1985-2014). The central and southern parts of Central Iran show the highest severity of wind erosion and the severity of DSI decreases by approaching the north. Therefore, considering the sensitivity of these areas, in addition to taking into account prevention programs, they should also be considered in regeneration and control programs.
 


H. R. Moradi, M. Rahmati, H. Karimi,
Volume 22, Issue 1 (6-2018)
Abstract

Groundwater is a major source of drought. Karstic aquifers are important sources of groundwater in the West and Kermanshah province. This study was performed to investigate the effects of the meteorological drought on the karstic aquifer with different conditions of development. The studied areas in this research included two karstic aquifers, Bistoon-Parau and Patagh mountain in Kermanshah province. In this study, we used monthly precipitation and springs discharge during a period of 20 years.  Accordingly, the SPI and SDI indices were used to investigate the different states of meteorological and hydrological droughts, respectively. To determine the relationship between meteorological droughts and groundwater, Pearson correlation was used; aalso, to determine the time delay, the correlation between the different time conditions (no delay and delay 1 to 6 months) of the SDI index and the SPI index was investigated. The results of the relationship between the meteorological drought and groundwater showed that both had a significant correlation (p-value: 0.01). Also,  based on the results of the correlation between different time conditions (no delay and delay 1 to 6 months) ,the SDI index was compared to the SPI index, showing that the time delay between the occurrence of meteorological drought and groundwater in the studied areas without time delay or a maximum one-month delay had happened. Based on the results, Pearson correlation coefficients between the SPI and SDI indices in the Bistoon-Parav region were more than those of the Patagh mountain region indicating the development of the Bistoon-Parav karst region, as compared with the Patagh Mountain.

F. Amiri, T. Tabatabaie, S. Valipour,
Volume 22, Issue 1 (6-2018)
Abstract

The purpose of this paper was to assess the groundwater quality near Qaemshahr landfill site using the Iran Water Quality Index for Groundwater Resources-Conventional Parameters (IRWQIGC). In this study, samples were taken from 11 wells with three replications in February 2015 and water quality was assessed by evaluating nitrate, fecal coliform, electrical conductivity (EC), pH, total hardness, sodium absorption ratio, biological oxygen demand, phosphate, chemical oxygen demand, and dissolved oxygen parameters with the standard measuring methods; also, the quality of ground water was determined using the IRWQIGC. Statistical description of the parameters was performed using the SPSS software. Spatial extension mapping parameters were drawn using geostatistics extension with the ArcGIS software. The results of water quality assessment revealed that 0.15% of the area was classified as bad, 98.85% as relatively poor, and 1% as middle in terms of quality. The results of spatial dispersion also revealed that water quality from the South to the North and North East was reduced. Evaluating the changes in water quality near landfill sites showed that 2149.56 square meters of total area had a relatively poor potential for the region’s groundwater recharge.

M. Nouri, M. Homaee, M. Bannayan,
Volume 22, Issue 1 (6-2018)
Abstract

In this study, the trends of changes of the standardized precipitation index in a 12-month timescale (SPI-12) and seasonal and annual precipitation were investigated in 21 humid and semi-arid stations of Iran during the 1976-2014 time period. After removing the serial correlation of some series, the trend of precipitation and SPI-12 was detected using the Mann-Kendall nonparametric trend test. The results revealed that the trends of annual precipitation had been declining in all stations over the past 39 years.  The seasonal precipitation trend in winter, spring, autumn and summer was downward in approximately 90, 95, 47 and 37% of the studied stations, respectively. In addition, the descending trend of wintertime precipitation was significant in Sanandaj, Khoy, Urmia, Hamedan, Mashhad, Torbat-e-heydarieh, Nozheh and Qazvin. Also, the temporal trend of SPI-12 was decreasing in all surveyed stations except Shahrekord. Furthermore, SPI-12 showed a significant downward trend only in Sanandaj and Fasa. Moreover, the most severe meteorological drought occurred in the period 1999-2000, in Ramsar, Urmia and Hamedan, and in the period 2008-2009, in Tabriz, Sanandaj, Shiraz, Fasa, Qazvin, Mashhad, Torbat-e-heydarieh, Shahrekord, Gorgan and Kermanshah stations. Overall, the results of this study indicated that the trend of precipitation in most studied sites, particularly in semi-arid parts of the northeast and southwest of Iran, has changed due to the severe and long metrological drought that has occurred in the recent decade (2005-2015).
 


F. Saberinasab, S. Mortazavi,
Volume 22, Issue 1 (6-2018)
Abstract

Today, the growth of population, the excessive growth of cities and subsequently, the industries development in all parts of the planet are evident. Such development leads to the entrance of chemical martials with various compounds, particularly heavy metals, in aquatic ecosystems. In this study, the contamination of the sediments around the Mighan wetland basin with heavy metals such as lead, zinc, copper and nickel was investigated using CF indexes (contamination factor), IGeo geo-accumulation indexes, and IPOLL sediment contamination severity. The results indicated a high concentration of copper and nickel metals, in comparison to zinc and lead metals, in the studied area. Also, regarding the location of sampling stations and their proximity of the industries around the wetland, the comparison of the results related to the measured metal concentration and the sediment quality indices, indicated a high concentration of the pollutants under examination in the southern part of the wetland, thereby emphasizing the need to control the pollutants in the wetland.


S. Pourhossein, S. Soltani,
Volume 22, Issue 2 (9-2018)
Abstract

Bhalme & Mooley Drought index is one of common indices used in drought studies. Due to the fact that drought indices can have different sensitivities to different region conditions and the length of data recorded, 62 synoptic and climatological stations were selected within a homogonous region to study this index advantages and to assess the effect of climate, precipitation regime, and data record on the index. The best results were found for the humid climate. Also, this index had acceptable results for semi- mediterranean regimes regarding all different time scales,; however the situation was different for Mediterranean regimes, showing the best results for the time scales simultaneous with the  precipitation period. From the data record point of view, the best results were estimated during the first 31- years of the common period which has correspondence with the results of the 36-year period.

H. Sharifan, S. Jamali, F. Sajadi,
Volume 22, Issue 2 (9-2018)
Abstract

In order to study the effects of different irrigation regimes and different levels of salinity on the growth parameters of Quinoa (Chenopodium quinoa Willd.), this experiment was performed in the research green house of Water Engineering Department, at f Gorgan University of Agricultural Sciences and Natural Resources, during 2016. The experimental design was a factorial with n a randomized complete design in three replications. Treatments included three irrigation levels (100, 75 and 50 percent of water requirements calculated by the evaporation pan class A) and five salinity levels (0.5, 4.3, 8, 11.8, 16 dSm-1). The results showed that the effect of irrigation on the Leaf area index, chlorophylls and RWC (P<0.01) and Leaf length, and width (P<0.05) was significant. The effect of salinity levels on the Leaf area index, chlorophylls, Leaf length and width, RWC, Specific leaf weight (P<0.01) and Leaf petiole length (P<0.05) was significant too. The interaction between irrigation and salinity levels on chlorophylls and RWC (P<0.01) and Leaf width (P<0.05) was significant as well. According to the results, Quinoa had a good tolerance to the elevated levels of deficit irrigation. Decreasing the irrigation levels from 100 to 50 percent of pan evaporation resulted in the reduction of the Leaf area index and RWC to 24.6 and 7.3 percent, respectively. The result also showed that Quinoa had a good tolerance to the elevated levels of salinity, the mixing sea water, and tap water at rate of 30 percent, with control treatment having no significance for all of the parameters. It seems that good stand establishment in the saline soils and water conditions could be insured if proper management is applied in the farms.

M. H. Tarazkar, M. Zibaei, G.r. Soltani, M. Nooshadi,
Volume 22, Issue 2 (9-2018)
Abstract

Nowadays, water resource management has been shifted from the construction of new water supply systems to the management and the optimal utilization of the existing ones. In this study, the reservoir operating rules of Doroodzan dam reservoir, located in Fars province, were determined using different methods and the most efficient model was selected. For this purpose, a monthly nonlinear multi-objective optimization model was designed using the monthly data of a fifteen-year period (2002-2017). Objective functions were considered as minimizing water scarcity index in municipal, industrial, environmental and agricultural sectors. In order to determine the operating rule curves of reservoir, in addition to the nonlinear multi-objective optimization model, the methods of ordinary least-squares regression (OLS), fuzzy inference system and adaptive network fuzzy inference system (ANFIS) were used. Also, the reliability, resiliency, vulnerability and sustainability criteria were used to compare the different methods of reservoir performance rules. The results showed that ANFIS model had the higher sustainability criterion (0.26) due to its greater reliability (0.7) and resilience (0.42), as well as its lower vulnerability (0.13), thereby showing the best performance. Therefore, ANFIS model could be effectively used for the creation of Doroodzan reservoir operation rules.

V. Rahdari, A. R. Soffianian, S. Pourmanafi, H. Ghaiumi Mohammadi,
Volume 22, Issue 3 (11-2018)
Abstract

Determining the cultivation crops area is important for properly supplying crops. The aim of this study was mapping the cultivation area crops in Chadian city for spring and summer during 2015 by using the time series data of the Landsat 8 satellite of OLI imagery. At first, the under cultivation area was determined by setting a low threshold in the marginal pixels of the agricultural rain fed in the spring image NDVI index. The area cultivated with wheat and alfalfa was prepared by subtracting spring and summer NDVI values. Cultivation maps, which were cultivated with potatoes, corn and orchards, were prepared using the supervised classification with the FISHER method in a step by step manner. Spring and summer cultivation maps were combined; finally, the major cultivation crops maps were produced by the hybrid classification method. Map accuracy assessment was done by producing error matrix and calculating kappa coefficient, total accuracy, commission and omission error, producer, and use accuracy; in all indices, they had an acceptable value, showing the capability of OLI and the used methods in separating each cultivation.

H. Shekofteh, A. Masoudi, S. Shafie,
Volume 22, Issue 3 (11-2018)
Abstract

Soil quality is the permanent soil ability to function as a live system within ecosystem under different land uses. Investigating the impact of land use type on soil quality indicators could help to distinguish sustainable managements and therefore, to inhibit soil degradation. In order to evaluate the effect of different land uses on soil quality indicators, a research based on a randomized complete design in Rabor region, Kerman Province, Iran, was conducted. A total of 104 samples were taken from the soil surface (0-15 cm) of four land uses including: pasture (28 samples), forest (25 samples), agronomy (27 samples) and garden land use (24 samples). Soil quality indicators were measured as: soil organic matter, particulate organic matter, and bulk density, plant available water capacity, S index, cation exchange capacity (CEC), electrical conductivity (EC), soil pH, and phosphatase enzyme. According to the results, land use types had a significant effect on all indicators except S index at 1% probability level. The maximum amount of soil pH, bulk density and phosphatase enzyme was obtained from forest land use. On the other hand, the maximum amount of the other indicators was attained from the garden land use. Totally, garden land use, due to having high organic matter, could improve the soil quality. However, the pasture land use had the worst soil quality due to the weak cover and the low organic matter.

E. Chavoshi, Sh. Arabi,
Volume 22, Issue 4 (3-2019)
Abstract

The objectives of this study were to estimate the concentration of lead (Pb) and cadmium (Cd) in agricultural products and the health risks of them on the human healths around the Irankooh Mine in Isfahan Province. The soil samples (0-20 cm of surface layer) and crop samples (rice and wheat) were collected using the composite and random sampling method. The total concentrations of Pb and Cd in soil were found to be 71.18 and 1.57 mg kg-1. The mean Pb concentrations in rice and wheat were 7.81 and 2.31 mg kg-1, respectively. These values for Cd were 0.15 and 0.124 mg kg-1, respectively. The mean daily intake of Pb through the consumption of cereals was more than the dietary reference intake (3.6 μg kg−1 day−1), but the daily intake of Cd was less than the dietary reference intake. The hazard index (HI) mean value for Pb and Cd for children and adults was 4.60 and 4.64, respectively. It showed that the consumption of the entire foodstuff could lead to potential health risks for consumers. There is also the cancer risk associated with exposure to lead.

Z. Abbasi, H. Azimzadeh, A. Talebi, A. Sotoudeh,
Volume 22, Issue 4 (3-2019)
Abstract

Groundwater quality evaluation is very necessary to provide drinking water. Groundwater excessive consumption can cause subsidence and penetration of saline groundwater into freshwater aquifers in Ajabshir Plain, on the Urmia lake margin. The main goal of the current project was to evaluate the groundwater quality by employing the qualitative indices of groundwater and GIS. Ten parameters of 15 wells including EC, TDS, total hardness as well as the concentration of Ca++, Na+, Mg++, K+, SO4--, HCO3- and Cl- were analyzed. At first, the maps of parameters concentration were prepared by the kiriging method. Then based on WHO drinking water standards, the maps were standardized and ranked for drawing the maps of quality indices. The results showed that quality index changes were in the range of moderate (61) to acceptable (81). Removing the single map method of sensitivity analysis detected the quality index was more sensitive to the K+ parameter. Finally, the quality index from the eastern north to the western south of Ajabshir Plain and the other areas was ranked in the acceptable and moderate classes, respectively.

M. Ghandali, K. Shayesteh, M. Sadi Mesgari,
Volume 23, Issue 1 (6-2019)
Abstract

Determination of water quality is an essential issue in water resources management and its monitoring and zoning should be considered as an important principle in planning. In this study, in order to investigate the quality of groundwater resources (springs, wells and qanats) in Semnan watershed, first, the water quality index for drinking and agricultural purposes was obtained by means of measuring SO4, Cl, Na, Mg, PH, EC, SAR, TDS in 55 groundwater sources. For calculating the parameters weight in WQI, the fuzzy hierarchy analysis process was used with the Chang's development analysis. Due to the lack of sampling points for zoning of the entire area, regarding the existence of EC data for the majority of groundwater resources used in this catchment (354 sources), as well as the high correlation (Adjusted R2=0.99) between WQI with EC, the mentioned indexes of other resources were estimated based on the regression relationship with EC. To analyze the spatial distribution and monitor the zoning of the groundwater quality, the ArcGIS version 10.3 and Geostatistical method such as simple Kriging and ordinary Kriging were used; additionally certain methods including Inverse distance weighting and Radial Basis Function were utilized. The performance criteria for evaluating the used methods including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), %RMSE and R2 were used to select the appropriate method. Our results showed that the ordinary Kriging and Radial Basis Function were the best methods to estimate the groundwater quality.

Miss M. Halil, N. Ghanavati, A. Nazarpour,
Volume 23, Issue 1 (6-2019)
Abstract

High concentrations of heavy metals in street dust are considered to be a serious risk to the human health and the environment. In this study, 30 dust samples were collected from the pavements in the main streets of Abadan to determine the level of pollution of heavy metals in the street dust. Heavy metal concentrations were analyzed by inductively coupled spectroscopy (ICP-OES) method. The level of heavy metals pollution was estimated based on enrichment factor, pollution index and Nemro Integrated Pollution Index. The average concentrations of heavy metals such as Pb, Zn, Cu, Cr, Cd, Ni, V, As and Co were 59.13, 287.50, 112.97, 50.03, 0.52, 56.77, 35.83, 7.10 and 7.53 mg/kg, respectively. Based on the average enrichment factor (EF), Ni, Cu and Pb had high levels of contamination and Zn contamination was high. According to the mean of pollution index (PI), heavy metals of Zn and Pb had a high contamination. According to the Nemro Integrated Pollution Index (NIPI), 96.66% of the samples had a high degree of contamination. The spatial distribution pattern of the heavy metals concentration showed that in the areas with high population densities, high traffic volumes and urban shopping centers, heavy metal pollution was severe.

A. Hematifard, M. Naderi, A. Karimi, J. Mohammadi,
Volume 23, Issue 1 (6-2019)
Abstract

Assessment of soil quality helps to make a balance between soil function and soil resources, improving soil quality and achieving the sustainable agriculture. For the quantitative evaluation of soil quality in the Shahrekord plain, Chaharmahal va Bakhtiari province, 106 compound surficial soil samples (0-25 cm) were collected. After the pre-treatments of soil samples, 11 physico-chemical soil characteristics/indicators as the total data set (TDS) were measured using the standard methods. Statistical analysis showed the usefulness of Principle Component Analysis (PCA) transformation. The minimum data set (MDS) was selected using PCA. Analytical Hierarchy Process (AHP) was carried out for the quantitative determination of indicator priorities and weights. Soil quality of the samples was calculated by introducing TDS and MDS into Integrate Quality Index (IQI) and Nemero Quality Index (NQI). The results showed the soil quality of the land uses was as Rangelands> Drylands<Irrigated croplands. The correlation coefficient between IQI-TDS and IQI-MDS was 0.97, while this value for NQI-TDS and NQI-MDS was 0.98. The correlation coefficient between IQI-TDS and NQI-TDS was 0.87 and that between IQI-MDS and NQI-MDS was 0.91. Classification of the resulted soil quality map IQI-TDS revealed that 12.5 % and 15.5 % of the plain were in very high and low quality conditions, respectively.

F. Oveisi, A. Fattahi Ardakani, M. Fehresti Sani,
Volume 23, Issue 1 (6-2019)
Abstract

Despite the recent droughts in Isfahan province, climatic changes and the rising trend of population growth, as well as development of industrial and agricultural activities, are exposed to the water crisis. Thus, in order to tackle this problem, the essential strategies should including exploring virtual water and water foot print for strategic crops in agricultural sector should be taken into consideration for the management of water supplies at risk. This study was aimed to examine virtual water and ecologic fingerprint of water for the wheat crop in Isfahan Province from the farming year 2006-7 through 2014-15. For this purpose, the quantity of virtual water was extracted using net irrigation demand by NETWAT software and the rate of irrigation efficiency was computed to be 48%. The results indicated that only in 2007, Isfahan province was an exporter of virtual water for the wheat crop, so this province exported about 0.15 billion cubic meters of virtual water to other provinces by wheat exportation, but Isfahan province was the only virtual water in the years (2008-15) and this was due to the annual population rise and the existing drought in this zone. During this period, the rate of the mean annual rate of ecological footprint of water was 5.87 billion cubic meters and Isfahan Province stored this volume of water from the given internal supplies annually, with the mean rate of 0.65 billion cubic meters of virtual water importation at that year.

S. Ekhtiary Khajeh, F. Negahban, Y. Dinpashoh,
Volume 23, Issue 2 (9-2019)
Abstract

In this study, drought characteristics of Arak, Bandar Anzali, Tabriz, Tehran, Rasht, Zahedan, Shiraz and Kerman stations during the statistical period of 1956 to 2015 were studied by Reconnaissance Drought Index (RDI) and Standardized Precipitation Index. Precipitation and temperature data were needed to calculate RDI. Precipitation data was also required to estimate SPI. In this study, Drinc software was used to calculate RDI, SPI and potential evapotranspiration (PET). The software calculated PET by the Thornthwaite method. One of the main challenges in drought monitoring is to determine the indicator that has a high reliability based on its monitoring purpose. Therefore, in this research, two methods used for selecting the appropriate index based on the minimum rainfall and normal distribution were evaluated. The results of the evaluation of the minimum rainfall method for selecting the appropriate index showed that most drought indices with the occurrence of minimum rainfall level indicated severe or very severe drought situations; in most cases, it could not lead to selecting an exact and unique index. Based on the results of the normal distribution method for the stations of Arak, Tabriz, Rasht, Zahedan, Shiraz and Kerman, SPI index, and for the stations of Bandar Anzali and Tehran, RDI index were selected as the most appropriate ones.

B. Atashpaz, S. Rezapour,
Volume 23, Issue 2 (9-2019)
Abstract

The present study was conducted to evaluate the ecological risk indices of Zn, Cu, Cd, Pb and Ni in the soils from Urmia region (Ghahramanloo village), as irrigated with treated wastewater. Accordingly, six different soil sites (five soil sites under wastewater irrigation and one soil site under well water irrigation as the control) were selected and sampled (AP horizon, 0-30 cm depth). Soil samples were air dried, passed through a 2-mm sieve, and analysed to determine the chemical properties and the studied heavy metals. The results showed that irrigation with the treated wastewater significantly increased the total elements in the order of Cd (228%)> Zn (118.5%)> Ni (81.5%)> Pb (54.2%)> Cu (23.5%). Nevertheless, with the exception of cadmium, other elements were within the admissible range based on the national and international standards. Ecological risk index (min = 125, max = 152, mean = 140) showed a considerable risk in all studied soils and Cd could be regarded as the major metal affecting the index yield.

F. Soroush, A. Seifi,
Volume 23, Issue 2 (9-2019)
Abstract

Evaluation of groundwater hydro chemical characteristics is necessary for planning and water resources management in terms of quality. In the present study, a self-organizing map (SOM) clustering technique was used to recognize the homogeneous clusters of hydro chemical parameters in water resources (including well, spring and qanat) of Kerman province; then, the quality classification of groundwater samples was investigated for drinking and irrigation uses by employing SOM clusters. Patterns of water quality parameters were visualized by SOM planes, and similar patterns were observed for those parameters that were correlated with each other, indicating a same source. Based on the SOM results, the 729-groundwater samples in the study area were grouped into 4 clusters, such that the clusters 1, 2, 3, and 4 contained 73%, 6.2%, 6.7%, and 14.1% of groundwater samples, respectively. The increase order of electrical conductivity parameter in the clusters was as 1, 4, 3 and 2. The results of water quality index based on the entropy weighting (EWQI) showed that all of the samples with excellent and good quality (36.3% of samples) for drinking belonged to the cluster 1. According to the Wilcox diagram, 435-groundwater samples (81.7%) in the cluster 1 had the permitted quality for irrigation activities, and the other 285-groundwater samples were placed in all four clusters, indicating the unsuitable quality for irrigation. The Piper diagram also revealed that the dominant hydro chemical faces of cluster 1 were Na-Cl, Mixed Ca-Mg-Cl and Ca-HCO3, whereas the clusters 2, 3, and 4 had the Na-Cl face. This study, therefore, shows that the SOM approach can be successfully used to classify and characterize the groundwater in terms of hydrochemistry and water quality for drinking and irrigation purposes on a provincial scale.

F. Sadeghdoust, N. Ghanavati, A. Nazarpour, Dr Timoor Babaenejad, M. J. Watts,
Volume 23, Issue 3 (12-2019)
Abstract

Heavy metals in street dust, as one of the most important environmental consequences of human activities, have attracted many researchers' attention in recent years due to their toxicity and sustainability. Therefore, this study aimed to investigate the hazard of heavy metals (lead, zinc, copper, chrome, cadmium, nickel, vanadium, arsenic and cobalt) on human health in street dust in Dezful. To this end, 30 dust samples collected from sidewalks of main streets of Dezful were analyzed by Atomic Absorption (AAS). The level of heavy metals pollution was estimated based on the pollution index and Nemro Integrated Pollution Index. Moreover, the spatial pattern of the concentrations of metals in street dust was prepared in GIS. The average concentrations of heavy metals in Pb, Zn, Cu, Cr, Cd, Ni, V, As and Co were 54.2, 223.6, 50.6, 44.4, 0.4, 45.8, 37.8, 3.3 and 7.6 (mg/kg), respectively. The average concentration of all heavy metals except As, V and Co in the samples of dust in the city of Dezful was several times higher than that of the background one. Based on the average EF and PI in the target area, heavy metals of Zn and Pb have high contamination. Based on the evaluation of NIPI, 100% of samples have high degree of contamination. The results showed that the source of pollution of the studied metals such as urban transport and burning of fossil fuels was anthropogenic.


Page 4 from 6     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb