Search published articles


Showing 64 results for لک

V. Rahdari, A.r. Soffianian, S. Pormanafi, S. Maleki,
Volume 27, Issue 3 (Fall 2023)
Abstract

Industrial development is necessary to create employment and achieve welfare. Nevertheless, due to the important environmental effects of these uses, it is necessary to consider the environmental issues in industrial area land allocation. The current research used the multi-criteria evaluation method and the combination with fuzzy concepts to investigate the land capability for industrial development in the Plasjan sub-basin in the Zayandeh-rood river basin. Evaluation criteria were determined by literature reviewing and using experts' knowledge, and standard applying fuzzy method via proportional functions and weighted using the hierarchical method. The combined classification of satellite images prepared the land use and land cover map. Then, the standardized criteria were combined in the form of a weighted linear combination and the industrial development capability model was prepared for this area and classified into five land capability classes. The results showed that environmental considerations have the most weight with 0.23, and geological and soil texture criteria have the least weight with 0.06. According to the results, only 213 hectares of the region were allocated for industrial and mining use at the time of the study. In comparison, 2325 hectares of the region have very high industrial potential which shows the capability for increasing industrial areas. Also, the highest class of land capability was related to areas without the capability for industrial development with an area of 246375 ha, equivalent to 60% of the entire region, which shows the importance of conservation of the important functions of this region in water supply and ecological resources.

R. Hosseinpour, H.r. Asgari, H. Nikanhad Qermakher, E. Malekzadeh, M.k. Kianian,
Volume 27, Issue 4 (Winter 2023)
Abstract

The soils of desert areas are mostly low in organic matter and may fluctuate greatly in terms of acidity. Biochars are one of the materials used to improve and modify some soil characteristics. This compound is very resistant to decomposition and remains in the soil for a longer period, reducing agricultural waste and turning it into a soil conditioner. This leads to keeping carbon in the soil, increasing food security, increasing biodiversity, and reducing deforestation. In this research, an attempt was made to investigate the biochar of fodder beet plant waste produced at different pyrolysis temperatures and its physical and chemical characteristics. For this purpose, fodder beet wastes were collected from settlements around Birjand and after being crushed and air-dried, they were pyrolyzed in an electric furnace under limited oxygen conditions at a temperature range of 300-700 degrees Celsius. Then, the characteristics of the produced biochars were performed with 3 repetitions of measurements and statistical analyses with SPSS software. The results of this research showed that the characteristics of biochars changed significantly with temperature change. The highest yield percentage (59%), organic carbon (56.33%), total nitrogen (0.53%), water retention (0.84g/g) at 300 and 400 degrees Celsius, and the highest amount of ash (% 76), acidity (8.21) and electrical conductivity (0.1ds/cm) was obtained at a temperature of 700 degrees Celsius. The percentage of carbon and the efficiency of biochar produced at temperatures of 300 and 400 degrees Celsius were higher than other biochar produced at other temperatures. Biochar produced at 300°C has better characteristics in terms of carbon percentage and acidity efficiency compared to biochar produced at 400°C. Although these differences were not statistically significant, due to biochar production being more economical in terms of energy consumption, it is recommended to produce biochar at a temperature of 300 degrees Celsius.

M. Salari, V. Rahdari, S. Maleki, R. Karami,
Volume 27, Issue 4 (Winter 2023)
Abstract

the countries of Iran and Afghanistan. A long period of drought has happened in this area by human interventions after 1999. The objective of current study is to predict the Hamoun wetland situation in scenarios with and without human intervention using the Markov model-automated cellular for 2019 and the next forty years. Land cover maps of the study area using satellite images for 1987 as a normal year, 1991 as a wet year, and 2019 as a year with human effects were prepared. Then, prediction model for 2019 were prepared using 1987 and 1991 cover layers in four scenarios, prediction models were prepared for the next forty years in normal, drought, and wet conditions. If the natural process of watering of Hamoun wetland continues, lower than 362735 hectares of wetland should become watering in 2019, while, according this year land cover map, less than 50000 hectares of wetland have water. Also, by continuation of the current trend and the effect of human activities in the 40-year models, 11230 hectares of the area will be watering, and if the natural process of the wetland continued using the model of 2019 this amount was equal to 373311 hectares. The results of the research show the completely different situation of the Hamoun wetland in the case of no human intervention in the watering of this wetland in 2019 and the model of the next forty years.

A. Salar, M. Shahriari, V. Rahdari, S. Maleki,
Volume 28, Issue 2 (Summer 2024)
Abstract

Unbalanced development of different land use/cover in basins without considering the contribution of all components, can cause serious damage to the stability of the entire basin. The development of agricultural areas by increasing the amount of water use and creating dams upstream of rivers are the most important threats to wetlands in many places. Jazmorian wetland is one of the seasonal wetlands in the south-east of Iran. The most important source of water supply for this wetland is the Halil-Rood River. To investigate the land use/cover changes of Jazmurian wetland and
 Halil-Rood River, the time series of Landsat satellite data for the years 1354, 1374, 1387, and 1401 were used in the present research. The Landsat satellite images were classified using a hybrid classification method and the land use/cover of the study area maps were prepared. The accuracy of the prepared maps for the latest image was calculated by preparing the error matrix, calculating the kappa index, and the overall accuracy of more than 0.8 and 9%, respectively. The investigation of the prepared maps showed that the area of land under water increased from 1354 to 1374 and then decreased from 119,552 hectares in 1374 to 723 hectares in 1401. The area of agricultural land increased from 2131 hectares in 1354 to 133913 hectares in 1387 and declined to 105795 hectares in 1401. The results of this study show that in this period, with the construction of a dam upstream of the Halil-Rood River, and the development of agricultural lands, the water volume level of the wetland decreased, and the wetland completely dried up in 1401. The present study indicates the necessity of considering different components of a watershed in development planning to achieve sustainable development.


Page 4 from 4     

© 2025 CC BY-NC 4.0 | Journal of Water and Soil Science

Designed & Developed by: Yektaweb