Search published articles


Showing 88 results for Quality

F. Soroush, A. Seifi,
Volume 23, Issue 2 (9-2019)
Abstract

Evaluation of groundwater hydro chemical characteristics is necessary for planning and water resources management in terms of quality. In the present study, a self-organizing map (SOM) clustering technique was used to recognize the homogeneous clusters of hydro chemical parameters in water resources (including well, spring and qanat) of Kerman province; then, the quality classification of groundwater samples was investigated for drinking and irrigation uses by employing SOM clusters. Patterns of water quality parameters were visualized by SOM planes, and similar patterns were observed for those parameters that were correlated with each other, indicating a same source. Based on the SOM results, the 729-groundwater samples in the study area were grouped into 4 clusters, such that the clusters 1, 2, 3, and 4 contained 73%, 6.2%, 6.7%, and 14.1% of groundwater samples, respectively. The increase order of electrical conductivity parameter in the clusters was as 1, 4, 3 and 2. The results of water quality index based on the entropy weighting (EWQI) showed that all of the samples with excellent and good quality (36.3% of samples) for drinking belonged to the cluster 1. According to the Wilcox diagram, 435-groundwater samples (81.7%) in the cluster 1 had the permitted quality for irrigation activities, and the other 285-groundwater samples were placed in all four clusters, indicating the unsuitable quality for irrigation. The Piper diagram also revealed that the dominant hydro chemical faces of cluster 1 were Na-Cl, Mixed Ca-Mg-Cl and Ca-HCO3, whereas the clusters 2, 3, and 4 had the Na-Cl face. This study, therefore, shows that the SOM approach can be successfully used to classify and characterize the groundwater in terms of hydrochemistry and water quality for drinking and irrigation purposes on a provincial scale.

S. Jafari, M. Golsoltani, M. Lajmir-Orak Nejati,
Volume 23, Issue 3 (12-2019)
Abstract

The aim of this study was the effect of raw water quality on the efficiency of domestic reverse osmosis apparatus in Khuzestan province. The results showed that the purified water quality was related to the quality of entrance raw water. With increasing in salt concentrations (EC) or TDS, purification efficiency was decreased. The cation and anions content of refinery water was related to TDS and EC. The Ca/Na and Mg/Na were decreased due to refinery. The ability of these apparatus to reduction of two valence cations were more than mono valence. As same as this trend was observed for anions. Also, the comparison of the EC of raw water and refinery from these apparatuses had different EC from different raw water entrance. This means of these apparatuses had different efficiency with changes of raw water quality. Generally, domestic water purification systems have better performance in Karun river water treatment than in Kheiryrabad and Karkheh rivers.

F. Amirimijan, H. Shirani, I. Esfandiarpour, A. Besalatpour, H. Shekofteh,
Volume 23, Issue 3 (12-2019)
Abstract

Use of the curve gradient of the Soil Water Retention Curves (SWRC) in the inflection point (S Index) is one of the main indices for assessing the soil quality for management objectives in agricultural and garden lands. In this study Anneling Simulated – artificial neural network (SA-ANN) hybrid algorithm was used to identify the most effective soil features on estimation of S Index in Jiroft plain. For this purpose, 350 disturbed and undisturbed soils samples were collected from the agricultural and garden lands and then some physical and chemical soil properties including Sand, Silt, Clay percent, Electrical Conductivity at saturation, Bulk Density, total porosity, Organic Mater, and percent of equal Calcium Carbonate were measured. Moreover, the soil moisture amount was determined within the suctions of 0, 10, 30, 50, 100, 300, 500, 1000, 1500 KP using pressure plate. Then, the determinant features influencing the modeling of S Index were derived using SA-ANN hybrid algorithm. The results indicated that modeling precision increased by reducing the input variables. According to the sensitivity analysis, the Bulk Density had the highest sensitivity coefficient (sensitivity coefficient=0.5) and was identified as the determinant feature for modeling the S Index. So, since increasing the number of features does not necessarily increase the accuracy of modeling, reducing input features is due to cost reduction and time-consuming research.

H. Owliaie, F. Mehmandoost, E. Adhami, R. Naghiha,
Volume 23, Issue 4 (12-2019)
Abstract

The conversion of forests to agricultural lands generally has damaging effects on soil qualitative indices. This study was conducted to investigate the effects of land use change on the physico- chemical and biological characteristics of the soils of Mokhtar Plain, Yasouj Region. Five soil samples (0- 30 cm) were taken from three land uses of dense forest, degraded forest, and dry farming. The physical, chemical and biological analyses were carried out in a completely randomized design. The results showed that by following the change in the forest land use to dry farming, the EC (56%), organic matter (67%), total nitrogen (71%), exchangeable potassium (48%), Basal respiration (42%), exhaled respiration (63%), fungi community (23%), acid phosphatase (59%), and alkaline phosphatase (79%) were decreased in the dry farming land use. However, the bacterial community (20%) and pH (5%) were increased in the dry farming land use and the amount of available phosphorus did not show any significant difference, as compared to the dense forest. In general, it can be concluded that by following forest degradation and change in land use, soil organic matter and its related indices, especially biological ones, are more affected. So, in order to maintain soil quality, appropriate management practices such as managed land use change, avoidance of tree cutting, especially on steep slopes, preventing of overgrazing, and addition of organic matter should be carried out in dry farming land use.

Y. Sabzevari, A Nasrollahi,
Volume 23, Issue 4 (12-2019)
Abstract

One of the ways to increase water productivity in agriculture is the use of new irrigation systems; for the precise design of these systems, water quality assessment is needed. The purpose of this study was to study the groundwater quality of Khorramabad plain for the implementation of drip irrigation systems. The qualitative indices of EC, SAR, TDS, TH, Na and pH were related to the statistical years 2006-2012. In this research, the data were normalized first and it was determined that the data were abnormal; so, the logarithmic method was used for normalization. To evaluate the groundwater quality of the area, land use methods were used. Among different methods, the ordinary kriging interpolation method with the least root mean square error for all parameters was used. Quality zoning maps showed that in the north and southwest, EC and SAR concentrations were in poor condition in terms of qualitative classification. TDS had a concentration of more than 4000 milligramrels, and Na had a concentration of more than 15 milligrams / ltr. In these areas, TH with the concentration of more than 730 mg / l had the highest contamination; in the central area of the plain, there was a higher risk of carbonate sediments. LSI rates in the western regions were more than one, which included about 12% of the plain; there were restrictions on the implementation of droplet systems in these areas. The best quality for implementing these systems was located in the south-east of the plain, covering 19% of the plain. Finally, the integrated map of qualitative characteristics showed that the maximum concentration of qualitative characteristics was located in the northern, central and southern regions, which included 62.29% of the plain area.

R. Rakhshani, M. Farasati, A. Heshmatpour, M. Seyedian,
Volume 24, Issue 1 (5-2020)
Abstract

In this research, the impact of the Alagol wetland on the water treatment of Atrak River was studied. From June, 2016, to May, 2017, on the fifteenth day of the month, four samples of water were collected from the middle and the outlet of the wetland. Also, the wetland was fed only in the months of September, November and February. The parameters of acidity, electrical conductivity, phosphate, nitrate, dissolved oxygen, biochemical oxygen demand, chemical oxygen and ammonia were measured. The water pH at the entrance and exit was significantly different. EC was higher at the entrance, and its value was decreased in the middle and output. DO in the outlet of the wetland was higher than that in the middle and inlet, indicating the improved water quality and high dissolved oxygen in the wetland output. NO3, NH4, PO4, BOD and COD were higher at the entrance to the wetland; also, it was decreased in the outlet and middle, and the difference was significant. Further, according to the results of September, November and February, which were fed to the wetland, water quality in the middle and outlet of the wetland was improved toward the entrance of the wetland. According to the results, Alagol wetlands could reduce the phosphorus, ammonia, BOD, COD and DO, and their concentrations were lower than the limit. However, given that the salinity at the entrance of wetland was too high, its amount in the output was higher than the standard limit and the wetland could not significantly reduce salinity. The results of this study showed that that of water pollution in the inlet, except that the dissolved oxygen parameters and the temperature were high and decreased in the middle outlet. Due to the quality of the wetland outlet, Alagol wetland water could be used for fish farming centers.

P. Heidari, S. Hojati, N. Enayatzamir, A. Rayatpisheh,
Volume 24, Issue 3 (11-2020)
Abstract

The objective of this study was to investigate the impact of land use change (forest and rangelands to agriculture) on some micromorphological indices of soil quality in part of Rakat watershed, southwest of Iran. Accordingly, intact soil samples from 0-15 and 15-30 cm depths were collected from the above-mentioned land uses, and microstructure, type and abundance of voids, redoximorphic features, and humic substances were compared. The results showed that in the natural forest use, most of the voids are in the form of macropores, whereas after their conversion to agriculture, these types of voids have little development. In natural rangelands uses, voids were mainly oriented channels and of macropore type, but after switching from pasture to agriculture, they were mainly of vughy type. The results showed that natural forests (27.73%) and natural grasslands (22.28%) had more abundance of voids than forest to agriculture (19.01%) and grassland to agriculture (18.62%) land uses. In both natural forests and pasture land uses, various types of iron and manganese nodules, coatings, hypo-coatings, and quasi-coatings were significantly higher than agricultural land uses.

A. Ahmadpour, S. H. Mirhashemi, P. Haghighatjou, M. R. Raisi Sistani,
Volume 24, Issue 3 (11-2020)
Abstract

In this study, we used the ARIMA time series model, the fuzzy-neural inference network, multi-layer perceptron artificial neural network, and ARIMA-ANN, ARIMA-ANFIS hybrid models for the modeling and prediction of the daily electrical conductivity parameter of daily teleZang hydrometric station over the statistical period of 49 years. For this purpose, the daily data for the 1996-2004 period were used for model training and data for the 1996-2006 period were applied for testing. In order to verify the validity of the fitted ARIMA models, the residual autocorrelation and partial autocorrelation functions and Port Manteau statistics were used. PMI algorithm were   then used to model and predict electrical conductivity for selecting the effective input parameter of the neural fuzzy inference network and the artificial neural network. The daily parameters of magnesium (with two days delay) and sodium (with one day delay), heat (with one day delay), flow rate (with two months delay), and acidity (with one day delay) were obtained with the lowest values of Akaike and highest values of hempel statistics as the input of the neural fuzzy inference network and the artificial neural network for modelling daily electric conductivity predictions; then predictions were made. Also, models evaluation criteria confirmed the superiority of the ARIMA-ANFIS hybrid model with the trapezoidal membership function and with two membership numbers, as compared to other models with a coefficient of determination of 0.86 and the root mean square of 29 dS / m. Also, the Arima model had the weakest performance. So, it could be applied to modeling and forecasting the daily quality parameter of the tele Zang hydrometer station.

H. Noori Khaje Balagh, F. Mousavi,
Volume 25, Issue 3 (12-2021)
Abstract

In the present study, CanESM2 climate change model and stormwater management model (SWMM) were employed to investigate the climate change effects on the quantity and quality of urban runoff in a part of Karaj watershed, Alborz Province. The base period (1985-2005) and future period (2020-2040) are considered for this purpose. Based on the existing main and lateral drainage system and to be more accurate, the watershed was divided into 37 sub-watersheds by ArcGIS software. To simulate rainfall-runoff, the intensity-duration-frequency (IDF) curve has been prepared for a 2-hour duration and 10-year return period, for the base period and RCP2.6 and RCP8.5 climate change scenarios based on the obtained precipitation data from Karaj synoptic station. Results showed that mean 24-hour precipitation values in RCP2.6 and RCP8.5 scenarios will increase by 21% and 11%, respectively, and maximum 24-hour precipitation values will decrease by 17% and 23%, respectively, as compared to the observed values in the base period. Also, based on the results of quantitative and qualitative runoff modeling in the study watershed, and according to the outflow hydrograph in the RCP2.6 and RCP8.5 scenarios, the outlet runoff discharge will decrease by 5.8% and 7.1%, respectively. Also, the flooded areas in the watershed will decrease by 13% and 15.28%, respectively. The concentration of pollutants in the RCP2.6 and RCP8.5 scenarios, compared to the base period, including total suspended solids (TSS), will increase by 7.48% and 9.24%, total nitrogen (TN) will increase by 6.93% and 8.48%, and lead (Pb) will increase by 7.32% and 8.91%, respectively.

M. Amini,
Volume 25, Issue 4 (12-2021)
Abstract

Investigation and analysis of groundwater quality to monitor contamination and identify the most important pollutants and pollution points is one of the research fields. The objective of this research was to plan to improve groundwater quality on various spatial and temporal scales. Groundwater information of Maragheh-Bonab plain was collected from 26 wells in 10 years (2001-2011) with 454 sampling points from East Azerbaijan Regional Water Organization and was analyzed using multivariate statistical techniques such as DFA and PCA. Analyzed Variables are included Mg, Ca, Cation, K, Na, TDS, TH, SAR, EC, Anion, pH, Cl, SO4, CO3, and HCO3. Results of PCA showed that variables such as cation, HCO3، TDS، SAR، EC، Anion ،Cl, Ca, and TH were identified as important variables which they can great impacts on the groundwater quality of this region and in the other hand DFA showed which mentioned variables can discriminate land uses and geology formations in primary and normal distribution data with power discriminatory of 68.7 %, 92.2 %, and 66.5 %, 89.1 %, respectively. Investigation of the spatial position of elements using interpolation technique in Maragheh-Bonab plain showed that variables concentration in lowlands are high and 20 villages and their surrounding farms are exposed to high contamination risk of groundwater.

N. Moradian Paik, S. Jafari,
Volume 26, Issue 4 (12-2022)
Abstract

Changes in land quality factors were investigated according to the change in land use of two conventional cropping systems in Khuzestan (Dimcheh region, periodic cultivation system, sugarcane, forest, and deforesting in Zaras region). The results showed that by the change of forest land use, organic carbon from 0.93 to 0.55%, cation exchange capacity (CEC) from 19.6 to 13.3 cmol/kg, C/N from 7.4 to 3.8%, the mean weight diameter of aggregate (MWD) from 1.7 to 1.3%, and microbial respiration from 0.11 to 0.06 mg of CO2 /gr of soil per day decreased and in contrast, the dispersible clay from 4.6 to 19.3% increased. PCA analysis for the parameters showed that five factors justified more than 90% of the variance in the values of FC, PWP, AW, and AF. In the Dimcheh region, the average volumetric moisture content of FC from 31.3% to 27.3%, available water from 12.9% to 9.8%, dispersible clay from 56.1% to 12.3%, and bulk density reduced from 1.6 to 1.4%, organic carbon from 0.45 to 0.78%, C/N from 6.3 to 10.0%, microbial respiration from 0.01 to 0.04 mg of CO2 /gr soil per day and MWD of aggregates increased from 0.77 to 1.3 mm. Five factors including FC, AW, BD, DC, and OM explained more than 90% of the variance.

A.r. Emadi, R. Fazloula, S. Zamanzad-Ghavidel, R. Sobhani4, S. Nosrat-Akhtar,
Volume 27, Issue 3 (12-2023)
Abstract

As one of the most necessary human needs, groundwater resources play a key role in the economic and political processes of societies. Climatic and land-use changes made serious challenges to the quantity and quality of groundwater resources in the Tehran-Karaj study area. The main objective of the present study is to develop a method based on individual intelligent models, including adaptive neural-fuzzy inference system (ANFIS), gene expression programming (GEP), and combined-wavelet (WANFIS, WGEP) methods for temporal and spatial estimation of total hardness (TH), total dissolved solids (TDS), and electrical conductivity (EC) variables in the groundwater resources of the Tehran-Karaj area for statistical period of 17 years (2004-2021). The results showed that 
combined-wavelet models have higher performance than individual models in estimating three selected variables. So that the performance improvement percentage of the WANFIS model compared to ANFIS and WGEP model compared to GEP, taking into account the evaluation index of root mean square error (RMSE) were obtained (23.713%, 18.018%), (12.581%, 33.116%), and (6.433%, 12.995%) for TH, TDS, and EC variables, respectively. The results indicated a very high spatial and temporal compatibility of the estimated values of the WGEP model with the observed values for all three qualitative variables in the Tehran-Karaj area. The results showed that the concentration of qualitative variables of groundwater resources from the north to the south of the study area has an upward trend for all three qualitative variables. In urban areas, pollution caused by sewage and population increase, as well as in agricultural areas, the use of chemical fertilizers and their continued infiltration into groundwater resources and 
over-extraction of groundwater resources aggravate their pollution. Therefore, in the study area, climatic changes and the type of land use are strongly related to the quality of groundwater resources.
A. Zare Garizi, K. Shahedi, A. Matboo,
Volume 28, Issue 1 (5-2024)
Abstract

Water quality characteristics play a crucial role in water resources management, watershed health assessment, and implementing effective management strategies. The objective of this research was to present an overall assessment of the surface water quality in the Gorganrood River Basin to be utilized for developing effective watershed management plans and programs. Various physicochemical water quality data including main anions and cations, Total Dissolved Solids (TDS), Electrical Conductivity (EC), Sodium Absorption Ratio (SAR), pH, and total hardness recorded at 25 hydrometric stations across the basin were analyzed and assessed with the Canadian (CCME) Water Quality Index. The mean water quality index for drinking, agriculture, and industrial purposes indicated that headwaters and higher areas generally exhibited better water quality compared to the downstream areas of the basin. Geochemical processes and the introduction of various pollutants during water flow from the headwaters to the basin outlet contribute to a decline in water quality. The highest water quality was observed in the Kabudval and Shirabad stations, whereas the Baghesalian station exhibited the lowest. For drinking water use, hardness, bicarbonate, and chloride were identified as variables contributing to water quality decline in the headwaters and upstream areas. However, these areas predominantly maintained a moderate to good quality for drinking purposes. Conversely, downstream areas experienced a significant deterioration in water quality with higher pollutant levels such as total dissolved solids (TDS), sulfate, and sodium, resulting in relatively poor to poor conditions. Approximately 60% of the stations in the basin had excellent water quality for agricultural use, with no limiting factors. Only three stations near the basin's outlet exhibited relatively poor to poor water quality due to elevated chloride levels, sodium adsorption ratio (SAR), and electrical conductivity. only 28% of hydrometric stations demonstrated good water quality for industrial use. Hardness, pH, and TDS are the main variables contributing to water quality decline for industrial use in the upstream, while downstream areas are impacted by chloride and sulfate. The outcomes of this study hold significant implications for effective water resources management, watershed preservation, and natural resource conservation in the Gorganrood basin. From industry and especially health aspects, however, more detailed investigations are needed, taking into account some other important variables of water quality (including nitrate, total coliform, fecal coliform, etc.).

E. Karamian, M. Navabian, M.h. Biglouei, M. Rabiei,
Volume 28, Issue 1 (5-2024)
Abstract

Cultivation of rapeseed as the second crop requires drainage systems in most of the paddy fields of the Guilan province. Mole drainage, as a low-cost and shallow drainage method that is suitable for rice cultivation conditions and easier to implement than pipe drainage, can be a solution in the development of second-crop cultivation. The present study was conducted to evaluate the drainage of mole drainage and nitrogen fertilizer management on the quantity and quality of drainage at Guilan University. In this regard, an experiment was conducted under two treatments including drainage and nitrogen fertilizer (i.e. traditional mole drainage and sand-filled mole drainage), and 180 and 240 kg of nitrogen fertilizer per hectare in three replications. After each rainfall during the plant growth period, water samples were taken from the drains, and parameters of electrical conductivity, pH, total suspended solids, total phosphorus, turbidity, concentrations of ammonium, chloride, nitrite, nitrate, and phosphate were measured. Also, the outflow from the drains and the water table level were measured by piezometers during the rain and after that. The results of the mean comparison of pH and total suspended solids showed that most of them were obtained with 7.49 and 281.25 mg/liter, respectively, in the mole drain filled with sand and the traditional mole drainage and 180 fertilizer treatment. The highest mean of electrical conductivity and turbidity was observed as 651 micro mohs/cm in the traditional mole drainage and 240 fertilizer treatment and with 67.76 NTU in the traditional mole drainage and 180 fertilizer treatment. The statistical analysis showed that the effect of drainage treatment on the amounts of ammonium, nitrite, nitrate, phosphate, and total phosphorus was not significant. The outflow from the traditional mole drainage was 49% lower than the sand-filled mole drainage. The traditional and sand-filled mole drains were able to drain excess water with average reaction coefficients of 0.8 and 0.83 per day during the growth period, respectively. Considering the speed of water discharge, drain discharge, and the main non-significance of qualitative parameters among drainage treatments, mole drainage filled with sand is recommended for the development of rapeseed cultivation in paddy fields.

M. Barahimi, A.r. Sehhat, H. Kavand, S. Parvizi,
Volume 28, Issue 3 (10-2024)
Abstract

Today, many countries, including Iran, face natural hazards such as ground subsidence, drought, floods, and acute water shortage. Lack of correct management of underground water resources leads to many of these natural hazards. Artificial recharge of aquifers is one of the solutions proposed in the world to deal with these natural hazards, especially ground subsidence. The quantitative and qualitative effects of the effluent treatment plant on the Damaneh Daran Aquifer recharge were investigated in this research. The results showed that aquifer recharge through the distribution of effluents in the Damaneh Daran River has a positive effect on increasing the water level and releasing effluents in the river will enhance the water level in a larger radius regardless of the quality of the effluents. Based on the result of the present study, it is suggested that all the effluent treatment plants be allocated to aquifer balancing in the future. In the part of replacing wastewater with active wells, due to the lack of wells with industrial and green area use in this region, provided advanced wastewater treatment, all wastewater should be replaced with active wells in the agricultural area.

M. Naderi Khorasgani, R. Amiri, A. Karimi, J. Mohammadi,
Volume 29, Issue 1 (4-2025)
Abstract

The soils of the Shahrekord plain, part of the Beheshtabad watershed subbasin in Shahrekord County, Chaharmahal va Bakhtiari province, have been used for crop production and domestic animal feeding for centuries, yet the soil quality of this plain has been overlooked. Therefore, assessing the quality of Shahrekord plain soil is essential. This research aimed to evaluate the physical soil quality of the plain using soil quality indices such as the Integrated Quality Index (IQI) and Nemoro Quality Index (NQI). A randomized compound sampling strategy was employed, and 106 surficial (0-25 cm) soil samples were collected during intensive fieldwork. Following pretreatments of the soil samples, several key soil characteristics were measured using standard methods, which were compiled into a Total Data Set (TDS) and used to calculate IQITDS and NQITDS. The minimum effective data set (MDS) was selected, and weights for the quality indices were determined using TDS and Principal Component Analysis (PCA). The minimum data set included the soil sand percentage, soil organic matter percentage, mean weighted diameter of aggregates, soil moisture at field capacity, bulk density, soil reaction, and electrical conductivity. The soil quality at each sample site was assessed using the indices and data sets, TDS and MDS. Geostatistical techniques and ordinary kriging methods were utilized to map soil quality. Results indicated that the soil quality of rangelands was significantly higher than that of cultivated soils (irrigated and drylands). Additionally, approximately 71% of the soils were classified as very low, low, and medium quality, highlighting the need for monitoring and managing such soils.

M. Asadi, M. Noshadi, A.r. Noshadi,
Volume 29, Issue 2 (7-2025)
Abstract

In this research, drinking water quality was investigated using acceptability, health, and nutrition-based indicators from 2010 to 2022 in Shiraz City (Fars province). Magnesium, fluoride, and calcium play a significant role in the contribution of drinking water in Shiraz City to the intake of dietary minerals. The acceptability water quality index (AWQI), health-based water quality index (HWQI), and drinking water quality index (DWQI) rankings in Shiraz City are excellent, but the average drinking water nutritional quality index (DWNQI) of Shiraz City is 77.52 ± 5.47, which falls within the good ranking. Therefore, while the conventional water quality indices (AWQI, HWQI, and DWQI) are excellent, the DWNQI index does not achieve an excellent rating, due to the inclusion of the nutritional value of water in the DWNQI index. In general, the trend of AWQI, HWQI, DWQI, and DWNQI over thirteen years in Shiraz City shows that the conventional drinking water quality indices (AWQI, HWQI, and DWQI) do not provide an accurate picture of the assessment of drinking water quality in many cases, as they do not consider the nutritional role of water. For this reason, water is sometimes treated more than necessary. Therefore, it is essential to revise the interpretation of drinking water quality using the DWNQI index to gain a comprehensive picture of drinking water quality.

M.r. Shoaibi Nobariyan, M.h. Mohammadi,
Volume 29, Issue 2 (7-2025)
Abstract

The objective of this study is to investigate the effects of solutes and water quality on evaporation amount and rate in two sandy and clayey soils. Soil samples containing aggregates and sand particles with diameters ranging from 0.5 to 1 millimeter were collected. Six columns were prepared during the experiment; three columns were filled with sandy soil and three with aggregated soil, each measuring 60 cm in height and 15.5 cm in inner diameter. One reference column was filled with distilled water. A saturated calcium sulfate solution was added to two columns, a 0.01 molar calcium chloride solution was added to two other columns, and distilled water was added to the remaining two. The amount of water lost through evaporation was recorded every 8 to 12 hours by weighing the columns. After approximately 130 days, the columns were sectioned, allowing for the establishment of moisture and solute concentration profiles for each soil column. The results indicated that the first and second stages of evaporation were distinguishable in sandy soil, whereas in clayey soil (aggregated soil), only the first stage of evaporation occurred due to the gradual transfer of water and the continuous hydraulic connection from the surface to the water table. The presence and type of solutes affected the evaporation rate and moisture profile, reducing evaporation and increasing water retention in deeper soil layers. Hydraulic connectivity (calcium sulfate > calcium chloride > distilled water) and the resulting capillary rise of and supply of evaporated water from higher layers caused a greater evaporation rate in the calcium sulfate compared to the calcium chloride and distilled water treatments in both soil types. Additionally, the formation of a salt crust on the soil surface due to solutes disrupted the hydraulic connection with the surface, resulting in decreased evaporation rates and cumulative evaporation.

M. Shayannejad, E. Fazel Najafabadi, F. Hatamian Jazi,
Volume 29, Issue 3 (10-2025)
Abstract

Regarding the increasing need for water resources and the decline of surface water resources, awareness of these resources is a crucial need in planning, developing, and protecting them. This research was conducted to model the water quality index (the most widely used feature of determining water quality) using machine learning models (Random Forest and Support Vector Machine) in the Zayandehrood River. Regarding the large number of water quality indices, the NSFWQI index was used in this study. First, this index was calculated, and then, input data, including water quality characteristics of 8 stations over 31 years, and the river water quality index were used. In this research, 80% of the data was used in the training stage, and the remaining 20% was used in the evaluation stage. The optimal model was selected based on the evaluation criteria, including R2, CRM, and NRMSE. The results showed that the Support Vector Machine algorithm (0.931 < R² < 0.982, 1.321

H. Rezazadeh, P. Alamdari, S. Rezapour, M. S. Askari,
Volume 29, Issue 3 (10-2025)
Abstract

Soil quality assessment plays a crucial role in sustainable land management, particularly in degraded areas such as saline and sodic soils. This study aimed to determine the spatial distribution of the Soil Quality Index (SQI) in saline and sodic soils around Lake Urmia using two geostatistical interpolation methods: Kriging and Inverse Distance Weighting (IDW). A total of 82 soil samples were collected from a depth of 0–30 cm, and 24 physical, chemical, and heavy metal properties were analyzed. The Soil Quality Index was calculated based on both linear and non-linear approaches. Principal Component Analysis (PCA) was used to identify a Minimum Data Set (MDS), including: calcium carbonate equivalent, EC, clay percentage, BD, silt percentage, organic carbon, Pb, and cadmium, which explained more than 78% of the total variance. The results indicated that the SQI showed moderate spatial variability across the study area, with a decreasing trend from west to east. Comparison of the interpolation methods revealed that Kriging performed better in the linear model, while IDW showed higher accuracy in the non-linear approach. The best-fitted theoretical model was spherical, with a range of influence varying between 6,130 and 20,610 meters. Overall, integrating the Soil Quality Index with geostatistical methods provides a powerful tool for understanding spatial variability and supporting effective planning in saline and sodic soils.


Page 4 from 5     

© 2025 CC BY-NC 4.0 | Journal of Water and Soil Science

Designed & Developed by: Yektaweb