Search published articles


Showing 43 results for Protein

Y. Choopan, A. Khashei Siuki, A. Shahidi,
Volume 21, Issue 4 (2-2018)
Abstract

Limited water resource in arid and semi-arid areas is one of the most important problems in the agricultural sector. Therefore, the use of non-conventional water resources becomes more important. For this reason, a study was conducted on barley to evaluate the effect of irrigation with sugar plant wastewater as a factorial randomized complete block design field experiment. Treatments include water well I1, wastewater I2, combined water and wastewater I3 (the ratio of seven to one, according to local practice) in two levels of without water stress S1 and  %75 water stress S2 and treatment I1S1 was considered as control. The results showed changes in surface tension of %1 had a statistically significant effect on plant height, grain yield and root length. As well changes of irrigation water in the level of %1 had a statistically significant effect on plant height, grain protein yield and root length. Maximum grain yield was obtained in treatment I1S1 with the weight of 4034 kg per hectare and lowest grain yield was obtained in treatment I2S2 with the weight of 1564 kg per hectare. The lowest and highest percentages of protein content were observed in treatment I1S1 for 12.37% and treatment I2S2 for 13.47%, respectively. The plant height showed the highest amount in control treatment, i.e. 82.87 Cm.

S. Abdi, A. Pirzad,
Volume 23, Issue 1 (6-2019)
Abstract

Water stress is one of the most important factors limiting the growth and production of crops in arid and semi-arid regions. To evaluate the effect of mycorrhizal fungi species on the growth and yield (quantity and quality) of Onobrychis sativa under water deficit condition, a greenhouse factorial experiment based on completely randomized design (CRD) with three replications was conducted in 2014. Treatments included five species of mycorrhizal fungi (Fanelormis mosseae, Rhizophagus intraradices, Claroideoglomus claroideum, Funneliformis caledonius, Glomus versiforme and non-mycorrhizal control) and two levels of irrigation (irrigation at 80% [well watering] and 50% [water deficit] field capacity [FC]). The highest grain yield (9.187 g/plant) was obtained from the stressed plants inoculated with Rh. intraradices with the same grain yield of F. mosseae inoculated plants (8.867 g/plant). With a significant reduction in the grain yield of stressed plants, mycorrhizal relationships even increased the yield more than the well-watered plants. Despite the decreases in the grain protein and phosphorous of water-deficit stressed mycorrhizal plants, the highest grain protein content was obtained from the plants inoculated with G. versiforme, and the highest grain phosphorus content was obtained from the plants inoculated with F. mosseae. Mycorrhizal symbiosis enhanced the yield and the quality of Sanfoin grain in water deficit stressed plants due to reducing root volume against the stimulating root elongation. In this way, the species G. versiforme exhibited the greatest positive effect.

Sh. Amiri, B. Khalili,
Volume 29, Issue 1 (4-2025)
Abstract

Soils are continuously exposed to large amounts of engineered nanoparticles, particularly silver nanoparticles (AgNPs), which can affect soil microbial activities and nitrogen cycling. The hypotheses of the present study were: (i) vegetation types would differ in their responses to Ag types and concentrations, (ii) these responses would be linked to changes in soil protein and amino acid concentrations, and (iii) combined plant root systems alongside Ag types and concentrations would have offsetting effects on soil protein and amino acid concentrations. A greenhouse experiment was conducted to test these hypotheses using a factorial arrangement of treatments within a randomized block design. Two soil types with loamy sand and sandy loam textures were collected from agricultural fields in Isfahan, specifically from the Badroud (33 44′ 50" N, 51◦ 57′ 55" E) and Femi (33◦ 42′ 17" N, 51◦ 59′58" E) regions. The treatments included: 1) soil types (loamy sand and sandy loam), 2) root systems (non-planted, wheat, and safflower), 3) Ag types (no Ag added, AgNPs, and AgNO3), and 4) Ag concentrations (50 and 100 ppm). The plants were harvested 110 days after sowing, with soil samples collected from both the root zone and non-planted soil, after which the concentrations of protein and amino acids were measured. In the Badroud soil, protein concentration significantly decreased (p < 0.05) with increasing depth. Although depth changes did not show a significant difference in protein concentration in the soil under wheat cultivation, increasing depth resulted in a significant decrease (p < 0.05) in protein concentration in the soil under safflower cultivation. In the Fami soil, the addition of silver nitrate led to a significant (p < 0.05) increase in protein concentration, despite the fact that the addition of silver nanoparticles had no significant (p < 0.05) effect on soil protein concentration. In the Badroud soil, the highest concentration of soil amino acids was observed in the silver nitrate treatment, while the silver nanoparticle treatment did not significantly affect soil amino acid concentrations (p < 0.05). However, applying silver treatments at both tested concentrations resulted in a significant increase (p < 0.05) in soil amino acid levels. Overall, the effects of nanoparticles varied depending on the measured parameters (protein or amino acid), soil texture, and type of cultivation. Further studies are needed to determine the mechanisms by which AgNPs and AgNO3 affect the soil nitrogen cycle in the presence of plants at different soil depths.


Page 3 from 3     

© 2025 CC BY-NC 4.0 | Journal of Water and Soil Science

Designed & Developed by: Yektaweb