Showing 1129 results for Ro
M.j. Aghasi, S.a.r. Mousavi, M. Tarkesh, S. Soltani,
Volume 28, Issue 3 (10-2024)
Abstract
Astragalus is the vegetation of many mountains of Iran's plateau and plays a major role in providing ecosystem services due to its pillow shape and deep rooting system, they facilitate the control and penetration of precipitation into the soil. The correlation of Astragalus ecosystems with arid and semi-arid climates has made them vulnerable to climate change. In this study, a runoff yield map based on the Budyco curve under current and future conditions of climate change (2050) was prepared using climate and temperature data from the Chelsea site (CanESM2 GCM) in TerrSet software and by using maps of sub-watersheds, annual precipitation, annual potential evapotranspiration, soil depth, plant accessible water and the current and future "Land Cover - Land Use" map, with a combination of field methods and species distribution models at the local scale of the Shur River watershed of Dehaghan (Central Zagros). Finally, the excess runoff damage produced due to climate change was estimated using the replacement cost method. The results indicated an increase in the annual runoff volume of the watershed from 70 million cubic meters to 105 million cubic meters under climate change conditions for the RCP26 scenario in 2050. Taking into account the cost of 10 million Rials for controlling 530 cubic meters of runoff through various watershed management projects, preventing the damages of excess runoff produced requires a credit amounting to 660 billion Rials based on the present value. This study proved the ability of TerrSet software to predict and produce an ecosystem service map of runoff yield under climate changes or land use changes and with the purpose of valuation on a local scale. Also, the above valuation can be the basis for planning and providing credit for the study and implementation of watershed management projects to deal with the threats of climate change.
M.j. Zareian, R. Seraj Ebrahimi, H. Dehban,
Volume 28, Issue 3 (10-2024)
Abstract
In the present study, the impact of climate change on maximum temperature and daily precipitation in 16 weather stations was investigated in the Sefidrood Basin from 2023 to 2052. 10 AOGCM models related to the sixth IPCC Assessment Report (CMIP6) were ranked based on their ability to simulate temperature and precipitation in the historical period (1980 to 2014). Then, the maximum temperature and daily precipitation outputs of the best model at each weather station were extracted using the LARS-WG downscaling model under three emission scenarios SSP126, SSP245, and SSP585 from 2023 to 2052. The Mann-Kendall test (95% confidence level) was also used to investigate the trend of changes in the average maximum temperature and maximum daily precipitation. The results showed that different AOGCMs have different accuracies in simulating temperature and precipitation in different regions of the basin, and their accuracies in simulating temperature were better than simulating precipitation. In general, the IPSL-CM6A-LR and HadGEM3-GC31-LL models had the best performance in simulating maximum temperature and precipitation, respectively. Results also indicated that the mean maximum temperature will increase between 0.9 and 2.8 °C in different emission scenarios. Also, the mean maximum daily precipitation will change between -8.6 and 7.17 mm in different emission scenarios.
M. Amiri, E. Fazel Najafabadi, M. Shayannejad,
Volume 28, Issue 3 (10-2024)
Abstract
Piano key weirs are a type of non-linear weir that have a higher discharge coefficient than similar linear weirs. These hydraulic structures have a lightweight foundation and a simple structure is designed and installed on dams and drainage channels. Due to the high efficiency of these weirs, the investigation of downstream scour and ways to reduce it has been the focus of engineers in recent years. In the present study, a trapezoidal type C piano key weir, three discharges, and three tailwater depths were used. Two obstacles with heights of 0.02 and 0.04 meters were also used at the end of the weir exit keys. The results showed that the presence of an obstacle reduces scour at the toe of the weir. The amount of reduction in scour at the toe of the weir was greater in the weir with a larger obstacle height than in the weir with a smaller obstacle height, and in both cases was less than in the simple weir. The presence of an obstacle reduces the maximum depth of scour and moves the distance of the maximum depth of scour away from the toe of the weir. In the weir with obstacle heights of 0.02 and 0.04 meters, compared to the weir without an obstacle, the amount of maximum scour depth is approximately 16.4% and 26.9% less, and the distance of the maximum scour depth is approximately 8.7% and 19.1% more than the weir without an obstacle. The scour index in weirs with obstacles is less than in weirs without obstacles, which can reduce the risk of weir overturning. The lowest value of the scour index was observed in the weir with an obstacle height of 0.04 meters, which is approximately 41.2% less than the weir without an obstacle.
S.m. Abtahi, M. Khosroshahi,
Volume 28, Issue 4 (12-2024)
Abstract
Today, wind erosion and dust are an environmental crisis, not just in desert areas but also in the entire country, and putting many costs. The combat against wind erosion in many desert areas by using oil mulches and the cultivation of compatible plants started in the 40s. However, the use of petroleum in addition to mulching the environmental problems, due to the high costs of purchase, displacement, and dispersion, is not economical. Therefore, the performance of non-oil and chemical mulch on dunes was investigated in Kashan. The research on fertilizer application of mulch under a completely randomized design includes: control (no mulch), a polymer mulch, potas, Fars, Paya, and Akrilik at 3 reps (3 sand hills) and the amount of erosion (with the help of the embedded indices in the hills), the survival of plants cultivated in the form of cuttings and seedlings, the percentage of humidity and temperature of each iteration were measured and variance analyses were performed. Field surveys and the results of the statistical analysis showed that the strength resistance of Fars, Paya, and Akrilik is almost the same. Observation of wood indices showed that Fars, Paya, and Akrilik mulches have almost the same strength in terms of wind resistance (almost no wind resistance). Fars mulch after 8 months of spraying showed small fractures due to the loss of flexibility. The study of soil temperature statistics showed that the treatments under mulch had no significant temperature difference compared to the control treatment. A comparison of soil moisture data indicated a high moisture percentage in the potash mulch treatment. The survival rate of cultivated plants was higher in Paya and Akrilik treatments. According to the results, Akrilik, Paya, and Fars mulch are recommended for sand fixation. One of the limitations of research in desert areas is the uncontrollability of environmental and human conditions. So, it is recommended to close the entire mulching area and use a mobile wind tunnel device at the project site to determine the wind slavery at different speeds.
A.r. Vaezi, F. Besharat, F. Azarifam,
Volume 28, Issue 4 (12-2024)
Abstract
The temporal distribution pattern of rainfall can play a role in the production of runoff and soil loss during rainfall. This study investigated four rainfall patterns: uniform, advanced, intermediate, and delayed rainfall under field conditions. The rainfall height in all rainfall patterns was 20 mm. In the uniform rainfall pattern, a constant rainfall intensity (40 mm h-1) was used and in the non-uniform rainfall patterns, a maximum rainfall intensity of 40 mm h-1 was applied for a 15-minute duration. The experiments were carried out in 60 cm × 80 cm plots on a hillslope with a slope gradient of 9% at three replications. Rainfall patterns were set up on the plots in five events with an interval of one week. The results showed a significant difference between rainfall patterns in runoff and soil loss (p<0.01). This difference was due to the destruction of surface soil structure and the reduction of water infiltration rate, especially during peak time of rainfall intensity (40 mm h-1). The highest runoff occurred in the delayed rainfall (3.43 mm) while, the highest soil loss (61.47 g m-2) was observed in the intermediate rainfall, which was associated with the peak intensity of rainfall at the end of the rainfall and its role in the destruction of the soil structure on the one hand, and the loss of infiltration rate on the other hand. Variation of runoff and soil loss from one event to another indicated that soil loss is in line with runoff production in uniform rainfall, while soil loss did not follow runoff in other rainfalls. Soil loss in these rainfalls was affected by both runoff production and availability of erodible soil particles. These results revealed the necessity of studying the rainfall intensity distribution pattern for accurate prediction of soil erosion and determining soil loss variation event by event in the semi-arid region.
F. Afsharipour, M.r. Sharifi, A. Motamedi,
Volume 28, Issue 4 (12-2024)
Abstract
Drought monitoring in snowy basins requires modifications in common drought indices, called snow drought indices. The latest developed snow index is SZIsnow. The SZIsnow index calculating with special algorithm requires access to the values of 22 different climatic and physical variables, including soil moisture at a depth of 0 to 10 centimeters, soil moisture at a depth of 100 to 200 centimeters, air temperature, water equivalent to snow, runoff from snow melting, snowfall, rainfall, total precipitation rate, evaporation and transpiration, wind speed, surface runoff, groundwater runoff, potential evaporation, air pressure, relative humidity, net latent heat flux, ground heat flux, net sensible heat flux, evaporation from bare soil, evaporation from the canopy, and potential evapotranspiration. So far, the mentioned index has been calculated only on a continental scale. Drought monitoring at the basin scale is important as one of the management aspects of water resources. On the other hand, due to the lack of sufficient information to estimate the mentioned parameters, the use of information from global databases will be a solution. Therefore, in this research, while introducing the process of calculating the SZIsnow index, in the Dez catchment area, extracting the required parameters of the index in a time scale of 3, 6, and 12 months and a period of 41 years (1982 to 2023) using data GLDAS and then drought monitoring of the basin was studied. The results showed that the new SZIsnow index is a multi-variable index that provides the possibility of calculating the index due to the existence of parameters that lack ground observations and on the other hand, the availability of the reliable GLDAS database. Also, the results showed that in the time steps of 3, 6, and 12 months, July at -0.59, June at -0.45, and October at -0.35 had the highest amount of drought, respectively.
F. Safari, H. Ramezani Etedali, A. Kaviani, L. Khosravi,
Volume 28, Issue 4 (12-2024)
Abstract
Climatic factors play an important role in the growth and development of plants and affect agriculture. The tolerance threshold of plants for each of these factors is limited. Any change in these factors can directly and indirectly have significant effects on agricultural production. Meanwhile, temperature stress is one of the most important damaging phenomena that causes many problems for production and yield. In this research, the time of occurrence of temperature stress with a statistical period of 44 years (1980-2023) and the relationship between air temperature with yield and biomass were investigated. According to meteorological data, June, July, and August were known as the hottest months of the year. On the other hand, the most heat waves were observed in July and August in the years 1997, 2014, and 2018, which led to a decrease in the quality of the product or the loss of the plant. According to the model evaluation results, the accuracy of the model in simulating days to flowering and days to maturity was confirmed using R2 (0.8 and 0.51) and NRMSE (15.36 and 7.12). Also, the model was simulated for the studied fields with deviation percentages of 1.92, 5.65, 4.94, 1.58, 0.96, and 1.49%, respectively. It showed that the model had a satisfactory performance and could be used for maize production planning. Next, the relationship between temperature, yield, and biomass was investigated, and there was a negative and significant relationship between temperature, yield, and biomass at the 99% confidence level.
A. Keshavarz, R. Modarres, S.a.r. Gohari,
Volume 28, Issue 4 (12-2024)
Abstract
This study was conducted to present rangeland bioclimatic zoning for Iran based on the changes in the power spectrum of the average monthly Net Primary Production (NPP) of the rangelands of Iran. Fluctuations of the mean monthly power spectrum of the NPP signal of rangelands of Iran from 2000 to 2022 were analyzed using the Power Spectrum Density (PSD) method in the frequency band between 0-100 Hz. In 24 bioclimatic subzones, there are four common periods in all sites at frequencies of 0 (no change is repeated), 8.34 (3.59 days), 16.66 (1.80 days), and 25 (1.2 days) Hz observed, which shows that the major data changes occur in those periods and that the NPP changes of Iranian rangeland are more influenced by global and regional effects than local effects. The maximum power of these spectra is concentrated in high time scales. Therefore, cycles with lower frequency (higher time scale) are more important than cycles with higher frequency (shorter time scale) and show that the changes of NPP in Iranian rangelands have long-duration cycles under climate fluctuations. In the present research, Iran was classified into 5+1 rangeland bioclimatic zones using the results of the monthly mean power spectrum of the NPP signal of rangelands, the Wards clustering method, and the Euclidean square distance. It seems that this method provides a proper match between biological boundaries and climate. Pearson correlation coefficient was used to investigate the coherence of rangeland bioclimatic regions within each homogeneous group. Correlation results showed a significant spectral density similarity within groups at the significance level of 0.01% between rangeland bioclimatic regions, especially in the second and fifth clusters.
M. Niroubakhsh, A.r. Masjedi, M. Heidarnejad, A. Bordbar,
Volume 28, Issue 4 (12-2024)
Abstract
The application of flip bucket and triangular launchers with different shapes has been given more attention due to safety and better energy consumption to protect the downstream bed of water structures, as well as economic benefits compared to other energy consumers. The objective of this research was to investigate the energy loss of the passing flow in the dentated flip bucket and dentated triangular sill spillways in laboratory and numerical conditions. Physical and numerical modeling was used in a rectangular flume with a length of 9 meters, a width of 0.5 meters, and a height of 0.5 meters, flip bucket, and triangular spillways with dentated with specific dimensions according to the USBR standard in different discharges intensities in laboratory and numerical conditions. The amount of energy loss in the dentated flip bucket spillway was 71.4% and the dentated triangular sill spillway was 74.8% in laboratory conditions, which showed that the dentated triangular sill spillway has a better performance in terms of energy loss than the flip bucket and triangular spillway. The results showed that the shape of the spillway geometry and the presence of the dentated at the end of the structure is an important and influential factor in the amount of energy loss of the currents passing through the dentated flip bucket and dentated triangular sill spillways, which causes more broken and compressed flow lines and, as a result, an increase in speed at the moment. The launch and finally the relative loss of energy is more downstream of the structure. After determining the better performance of the dentated triangular sill spillway in energy loss, the numerical simulation of the dentated triangular sill spillway was performed using the numerical calculation method in Flow-3D software. The results of the analyses indicated that the amount of energy loss in the dentated triangular sill spillway in the numerical calculations was 87.5%, which showed the alignment and correctness of the tests performed with the laboratory conditions.
M. Naderi Khorasgani, R. Amiri, A. Karimi, J. Mohammadi,
Volume 29, Issue 1 (4-2025)
Abstract
The soils of the Shahrekord plain, part of the Beheshtabad watershed subbasin in Shahrekord County, Chaharmahal va Bakhtiari province, have been used for crop production and domestic animal feeding for centuries, yet the soil quality of this plain has been overlooked. Therefore, assessing the quality of Shahrekord plain soil is essential. This research aimed to evaluate the physical soil quality of the plain using soil quality indices such as the Integrated Quality Index (IQI) and Nemoro Quality Index (NQI). A randomized compound sampling strategy was employed, and 106 surficial (0-25 cm) soil samples were collected during intensive fieldwork. Following pretreatments of the soil samples, several key soil characteristics were measured using standard methods, which were compiled into a Total Data Set (TDS) and used to calculate IQITDS and NQITDS. The minimum effective data set (MDS) was selected, and weights for the quality indices were determined using TDS and Principal Component Analysis (PCA). The minimum data set included the soil sand percentage, soil organic matter percentage, mean weighted diameter of aggregates, soil moisture at field capacity, bulk density, soil reaction, and electrical conductivity. The soil quality at each sample site was assessed using the indices and data sets, TDS and MDS. Geostatistical techniques and ordinary kriging methods were utilized to map soil quality. Results indicated that the soil quality of rangelands was significantly higher than that of cultivated soils (irrigated and drylands). Additionally, approximately 71% of the soils were classified as very low, low, and medium quality, highlighting the need for monitoring and managing such soils.
J. Karimi Shiasi, F. Fotouhi Firoozabad, A. Fathzadeh, M. Hayatzadeh, M. Shirmardi,
Volume 29, Issue 1 (4-2025)
Abstract
One of the main factors contributing to water erosion is the inherent characteristic of soil erodibility. Erodibility depends on particle size distribution, organic matter, structure, and soil permeability. This research aimed to investigate changes in the soil erodibility factor across geomorphological facies. The soil erodibility index was estimated by sampling 58 points within the geomorphological facies of the Dorahan watershed, using the Wischmeyer and Smith method. In the laboratory, soil granularity distribution, organic matter, soil structure, the amount of gravel, lime, salinity, acidity, and sodium absorption ratio were measured. Results indicated that soil erodibility across the entire area ranges from 0.0148 to 0.0661 (t.hr/Mj.mm). The soil erodibility index (K) for the hro-p1 and hro-p2 facies is higher than for others and exhibits the widest range of variations compared to the other facies. The lowest range of changes within geomorphological facies is associated with the hrc facies. The erodibility index decreases from the east to the west of the basin due to the presence of exposed rock faces, which protect the soil as a cover layer.
Sh. Amiri, B. Khalili,
Volume 29, Issue 1 (4-2025)
Abstract
Soils are continuously exposed to large amounts of engineered nanoparticles, particularly silver nanoparticles (AgNPs), which can affect soil microbial activities and nitrogen cycling. The hypotheses of the present study were: (i) vegetation types would differ in their responses to Ag types and concentrations, (ii) these responses would be linked to changes in soil protein and amino acid concentrations, and (iii) combined plant root systems alongside Ag types and concentrations would have offsetting effects on soil protein and amino acid concentrations. A greenhouse experiment was conducted to test these hypotheses using a factorial arrangement of treatments within a randomized block design. Two soil types with loamy sand and sandy loam textures were collected from agricultural fields in Isfahan, specifically from the Badroud (33◦ 44′ 50" N, 51◦ 57′ 55" E) and Femi (33◦ 42′ 17" N, 51◦ 59′58" E) regions. The treatments included: 1) soil types (loamy sand and sandy loam), 2) root systems (non-planted, wheat, and safflower), 3) Ag types (no Ag added, AgNPs, and AgNO3), and 4) Ag concentrations (50 and 100 ppm). The plants were harvested 110 days after sowing, with soil samples collected from both the root zone and non-planted soil, after which the concentrations of protein and amino acids were measured. In the Badroud soil, protein concentration significantly decreased (p < 0.05) with increasing depth. Although depth changes did not show a significant difference in protein concentration in the soil under wheat cultivation, increasing depth resulted in a significant decrease (p < 0.05) in protein concentration in the soil under safflower cultivation. In the Fami soil, the addition of silver nitrate led to a significant (p < 0.05) increase in protein concentration, despite the fact that the addition of silver nanoparticles had no significant (p < 0.05) effect on soil protein concentration. In the Badroud soil, the highest concentration of soil amino acids was observed in the silver nitrate treatment, while the silver nanoparticle treatment did not significantly affect soil amino acid concentrations (p < 0.05). However, applying silver treatments at both tested concentrations resulted in a significant increase (p < 0.05) in soil amino acid levels. Overall, the effects of nanoparticles varied depending on the measured parameters (protein or amino acid), soil texture, and type of cultivation. Further studies are needed to determine the mechanisms by which AgNPs and AgNO3 affect the soil nitrogen cycle in the presence of plants at different soil depths.
H. Ramezani Etedali, S. Koohi,
Volume 29, Issue 1 (4-2025)
Abstract
Agriculture, as a crucial economic and social sector in Iran, has always been significantly influenced by weather conditions, water availability, and farm management practices. Enhancing productivity and optimizing resource management in crop production are essential to achieving sustainable agricultural development and ensuring food security. This research aimed to investigate how much wheat, barley, and corn production, separately from irrigated and rainfed crops, will be affected by the severity of climatic drought (based on the CMIP6) in Iran. This research was carried out using the amount of wheat, barley, and corn production in all the provinces, which was provided by the Agricultural Jihad Organization during the years 1371 to 1402. Climate data was obtained from the NEX-GDDP database, and the De Martonne aridity index was calculated to investigate changes in aridity under climate scenarios. The results indicated that during the baseline period, the production of rainfed wheat, barley, and corn under semi-arid to very arid climatic conditions was approximately 2,076, 434, and 15 thousand tons per year, respectively. With the intensification of arid conditions across the country, these production levels are projected to increase to 3,333, 693, and 16 thousand tons under the SSP2 scenario and further rise to 3,558, 842, and 16 thousand tons under the SSP5 scenario. Additionally, the production of irrigated wheat, barley, and corn in semi-arid to very arid climatic conditions during the baseline period stands at approximately 6,240, 1,683, and 5,842 thousand tons, respectively. Under the SSP2 climate scenario, the production is expected to reach about 7,126, 1,757, and 6,253 thousand tons, while in the SSP5 scenario, the estimated production is approximately 7,348, 1,780, and 6,324 thousand tons. The findings revealed notable spatial differences in crop production across the country, highlighting that the climatic conditions, particularly in the central, southern, southeastern, and southwestern regions, are becoming increasingly arid. It is crucial to implement smart planning and policies, adopt advanced technologies, and improve the management of water and soil resources to mitigate the adverse impacts of these changes and better adapt to evolving conditions. Addressing these challenges and implementing effective measures are essential steps toward achieving sustainability in the agriculture and natural resources sectors.
A. Mirzaei, A. Soltani, F. Abbasi, E. Zeinali, Sh. Mirkarimi,
Volume 29, Issue 1 (4-2025)
Abstract
Water scarcity and adaptation to it are the most significant issues facing Iran's agriculture. Optimizing the cropping pattern is one of the fundamental strategies for addressing water scarcity. This study evaluated the optimization of the cropping pattern in the irrigated lands of Fars province, one of Iran's key agricultural production areas. Linear mathematical programming and the SAWA system (System for Provincial Agricultural Water Balance and Accounting) were employed. The optimal cropping pattern (OCP) was designed to minimize applied irrigation water and was compared with the current cropping pattern (CCP) as well as a proposed cropping pattern from the Agricultural Jahad Organization (CPAJO) for the province for the cropping year 2023-2024. The results indicated that in the OCP, compared to the CCP, the cultivated area for the following crops decreased: wheat by 30%, barley, grain maize, silage maize, alfalfa, sugar beet, potato, cold- season legumes, and cold-season oil crops by 60%, rice by 80%, warm-season fruit trees by 42%, and vegetables by 13%. Conversely, the cultivated area for warm-season legumes and cold-season fruit trees each increased by 60%, while cold-season legumes increased by 150%. To meet the adaptation goals for water scarcity and sustainable agriculture outlined in this study, a 24% reduction in the irrigated cultivation area of the province was deemed necessary. The OCP achieved a 34% reduction in applied irrigation water at the provincial level without decreasing farmers' income. Compared to the CCP, the OCP led to a 32% reduction in the amount of plant production (by weight) at the provincial level. However, prioritizing plants with higher gross economic profit and lower water consumption over those with lower gross economic profit and higher consumption resulted in the gross economic return of the OCP being comparable to that of the CCP and the CPAJO. The comparison of OCP with CPAJO indicated that the CPAJO has not seriously considered adaptability to water scarcity or agricultural sustainability. The CPAJO needs to be reviewed and optimized to address water scarcity and ensure production stability in light of the impacts of excessive water withdrawal in the province.
H. Ramezani Etedali, M. Ahmadi,
Volume 29, Issue 2 (7-2025)
Abstract
change, accurately predicting wheat production is essential for developing precision agriculture. Remote sensing enables the indirect prediction of crop production before harvest. This research investigates the application of the random forest method and support vector regression for simulating wheat production across ten selected farms in Qazvin Plain from 2019 to 2020, employing NDVI, MSAVI, and EVI vegetation indices. Sentinel 2 satellite data was utilized for the vegetation indices. Production data for the ten wheat fields was obtained from the Agricultural Jihad Organization of Qazvin Province. Evaluation of support vector regression and random forest to assess both the observed and simulated wheat production data was conducted using R2, MBE, RMSE, and MAE statistics. To explore the simulation of wheat production using vegetation indices, seven methods were defined: methods 1 to 3 examine each index separately; methods 4 to 6 focus on binary combinations of the indices; and method 7 considers the combined effects of all three indices. The support vector regression model provided good estimates of wheat production in all methods, except methods one and four, in the test phase, with a coefficient of determination of more than 0.98 and a low RMSE. The random forest model showed significant results in all methods except methods two and six during the test phase, achieving a 95% probability (P-value=0.00) with a coefficient of determination greater than 0.8. Overall, this research highlights the importance and potential of machine learning techniques for timely crop production prediction as a strong foundation for regional food security.
F. Zolfaghari, S. Eslamian, A.r. Gohari, M.m. Matinzadeh, S. Azadi,
Volume 29, Issue 2 (7-2025)
Abstract
Drought represents one of the most critical natural disasters, exerting profound impacts on agriculture, society, the economy, and water resources. Various indices are used to monitor drought and its effects. This study aims to monitor drought in the Zayandeh-Rud Basin using the Standardized Precipitation Index (SPI), the Standardized Precipitation-Evapotranspiration Index (SPEI), the Evaporative Demand Drought Index (EDDI), the Palmer Drought Severity Index (PDSI), and the Reconnaissance Drought Index (RDI). All these indices are based on potential evapotranspiration, incorporating parameters such as precipitation, temperature, relative humidity, wind speed, and sunshine duration. These five indices were calculated and evaluated during the statistical period of 1993–2023 for meteorological stations in Isfahan, East Isfahan, Kabootarabad, Daran, Shahreza, Najafabad, and Mobarakeh. After calculating the indices and using spatial zoning maps, the studied stations were compared in terms of these indices. The continuity of dry and wet periods, as well as the intensity of droughts and wet spells, was analyzed. Subsequently, drought intensities during different years in these stations were ranked using the TOPSIS model based on factors such as precipitation, potential evapotranspiration, and station elevation. The results showed that in stations with a dry climate (such as Isfahan, East Isfahan, and Shahreza), drought occurrences (as indicated by higher rankings) have been consecutive over multiple years. Comparing the performance of the indices in the studied stations using spatial zoning maps revealed that the intensity of droughts and wet spells in regions with dry and semi-dry climates was not very significant. However, in areas with humid climates, the fluctuations in drought and wet spell intensities were quite substantial. The findings indicate that the PDSI and EDDI indices are more suitable for evaluating drought in dry climates.
I. Saleh, S. Zandifar, M. Khazaei,
Volume 29, Issue 2 (7-2025)
Abstract
Groundwater resources are affected by long-term drought conditions and have received less attention than other issues. The current research was carried out to investigate and zone the quantitative fluctuations of groundwater as well as the temporal analysis of groundwater drought using GRI in the study area of Shiraz in the Maharloo-Bakhtegan watershed. The zoning of groundwater table variations was done in the ArcGIS environment, and a representative hydrograph of the aquifer was prepared using 15-year data (2003-2018) of groundwater resources divided into three five-year periods. Also, the drought of the groundwater resources of the studied plain was investigated using the GRI index. According to the results, the highest level of the groundwater table is related to the northwestern area of the plain by 1810.1 m in October 2007, and the lowest water table was observed in the southern study area with the amount of 1423.6 m in October 2017. Also, the results showed that the groundwater table faced a drop of 6 m and an average annual drop of 0.5 m during the studied 15 years. The volume changes of the reservoir also indicated that, in addition to consuming the entire renewable reserve, a large part of the fixed reserve has also been exploited in the past years. The descending trend of GRI and its intensification in the last years of the studied period is one of the most important results of this research, which occurred due to population growth and increasing cultivated area, a decrease in precipitation, and climate change.
S. Yousefi, S.n. Emami, M. Nekooeimehr, S. Mardanian,
Volume 29, Issue 2 (7-2025)
Abstract
In the present study, the Road Sediment Delivery Model (SEDMODL) and Geographic Information System (GIS) were utilized to estimate the average annual sedimentation caused by the forest road network in the oak forests in the west of Iran, Chaharmahal and Bakhtiari Provinces (Nazi forest road with a length of 5171 meters). Sedimentation from the study forest road network was estimated based on three basic factors in the model. Also, 30 erosion benchmarks were installed to measure the erosion and sedimentation rate at different distances from the road and in different parts of the study road and changes were measured during a year. The results showed that the average soil erosion at different distances from the Nazi road based on erosion benchmarks is 5.7 mm per year. In addition, the estimated erosion and sedimentation rate of the entire study road network based on the SEDMODL model is 2875 and 570 tons per year per kilometer, respectively. Model evaluation using erosion benchmarks showed that SEDMODL is a suitable model for estimating soil erosion on forest roads in the west of Iran (R2=0.78 and RMSE=0.73). It should be noted that statistical analysis of erosion hot-spot analysis showed that 39 percent of forest roads in Nazi showed very high erosion. Based on the results of the present study, it is suggested that conservative, protective, and road maintenance measures in areas with high erosion risk should be prioritized by decision-makers.
J. Ghaneiardakani, S.a. Mazhari, F. Ayati,
Volume 29, Issue 2 (7-2025)
Abstract
This study investigates the impact of agricultural activities on the soils of southern Mehriz by analyzing their geochemical composition and comparing the physicochemical properties of pistachio orchard soils (agricultural soils) with those of undisturbed natural soils. The results indicate that agricultural practices have led to an increase in Total Organic Carbon (TOC), averaging 1.5%, and a reduction in soil acidity. Additionally, phosphorus concentrations have risen in agricultural soils. These soils also exhibit enrichment in elements such as cadmium (Cd), antimony (Sb), chromium (Cr), nickel (Ni), lead (Pb), scandium (Sc), and rare earth elements (REE) compared to natural soils, with a more homogenized REE distribution pattern. Although the concentrations of these trace elements remain within national environmental standards and below critical thresholds, the study highlights a significant increase in the bioavailability of heavy metals due to agricultural activity. This finding underscores a potential environmental risk if such changes are not properly managed in the future.
M. Khoshoei,
Volume 29, Issue 2 (7-2025)
Abstract
The issue of water scarcity or the limited availability of water resources, including concepts such as water stress, water shortage, and water crisis, is investigated in this study. Water stress refers to problems related to access to freshwater resources, particularly due to the excessive withdrawal of surface and groundwater. A water crisis describes a situation where the available clean and safe drinking water in a specific region is insufficient to meet demand. Factors like drought, reduced rainfall, and pollution can exacerbate water stress. Water shortage arises from reasons such as the inability to meet demand, economic competition over water quality and quantity, conflicts among users, the irreversible depletion of groundwater resources, and negative environmental impacts. This study provides an index to assess water stress for spatial analysis in the study area and analyzes relevant data by collecting information from various sources. This index utilizes both static and dynamic parameters to estimate drought and better depict water stress conditions. Static parameters include land use, slope, and soil type. Dynamic parameters include precipitation, temperature, and groundwater level. Kashan County was selected as the case study due to the continuous reduction in water resources. The results showed that in the water years 2005, 2014, 2020, and 2021, Kashan experienced the highest level of water stress, while in the water years 2002, 2004, 2010, 2012, 2013, and 2015, it experienced the lowest level of water stress.